albums <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2024/2024-05-07/rolling_stone.csv')
## Rows: 691 Columns: 21
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (8): sort_name, clean_name, album, genre, type, spotify_url, artist_gen...
## dbl (13): rank_2003, rank_2012, rank_2020, differential, release_year, weeks...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Find the amount of artist/bands that include the word "The" in their name
str_detect(albums$clean_name, "The")
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
## [49] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [61] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [97] TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE
## [121] TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
## [133] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
## [145] FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
## [157] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
## [169] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
## [193] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [205] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
## [217] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [229] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [241] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [277] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [289] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [301] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [313] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [325] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
## [397] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [457] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [469] TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
## [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [493] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
## [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
## [517] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
## [529] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE
## [541] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [553] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [601] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
## [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [625] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
## [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [661] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
## [685] FALSE FALSE FALSE FALSE TRUE FALSE TRUE
sum(str_detect(albums$clean_name, "The"))
## [1] 103
albums %>%
summarise(num_The = sum(str_detect(clean_name, "The")))
## # A tibble: 1 × 1
## num_The
## <int>
## 1 103
albums %>%
mutate(col_The = str_extract(clean_name, "The")) %>%
select(clean_name, col_The) %>%
filter(!is.na(col_The))
## # A tibble: 103 × 2
## clean_name col_The
## <chr> <chr>
## 1 The Chicks The
## 2 The Beatles The
## 3 The Beatles The
## 4 The Ronettes The
## 5 The Beatles The
## 6 The Beatles The
## 7 The Raincoats The
## 8 The Beatles The
## 9 The Beatles The
## 10 The Byrds The
## # ℹ 93 more rows
albums %>%
mutate(col_Group = str_replace(clean_name, "The", "A Group of")) %>%
filter(col_Group != clean_name) %>%
select(col_Group)
## # A tibble: 103 × 1
## col_Group
## <chr>
## 1 A Group of Chicks
## 2 A Group of Beatles
## 3 A Group of Beatles
## 4 A Group of Ronettes
## 5 A Group of Beatles
## 6 A Group of Beatles
## 7 A Group of Raincoats
## 8 A Group of Beatles
## 9 A Group of Beatles
## 10 A Group of Byrds
## # ℹ 93 more rows