# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
“MSFT”, “AAPL”, “F”, “JPM”, “SBUX”
from 2012-12-31 to present
symbols <- c("MSFT", "AAPL", "F", "JPM", "SBUX")
prices <- tq_get(x = symbols,
from = "2012-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period. = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "F" "JPM" "MSFT" "SBUX"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weigts = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 142 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 -0.000198
## 2 2013-02-28 -0.00229
## 3 2013-03-28 0.0162
## 4 2013-04-30 0.0584
## 5 2013-05-31 0.0744
## 6 2013-06-28 -0.0293
## 7 2013-07-31 0.0580
## 8 2013-08-30 -0.00248
## 9 2013-09-30 0.0252
## 10 2013-10-31 0.0460
## # ℹ 132 more rows
# Define risk free rate
rfr <- 0.0003
portfolio_sharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_sharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.248
# Create a custom function to calculate rolling SR
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data
,Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define window
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 119 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.514
## 2 2015-01-30 0.444
## 3 2015-02-27 0.512
## 4 2015-03-31 0.458
## 5 2015-04-30 0.455
## 6 2015-05-29 0.409
## 7 2015-06-30 0.440
## 8 2015-07-31 0.412
## 9 2015-08-31 0.312
## 10 2015-09-30 0.276
## # ℹ 109 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
# Labeling
labs(x = NULL, y = "Rolling Sharpe Ratio") +
annotate(geom = "text",
x = as.Date("2020-06-01"), y = 0.6,
label = "This portfolio has fluctuated since 2016", color = "red", size = 3.5)
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
The portfolio’s performance, shown by the rolling Sharpe ratio, has had a lot of ups and downs since 2016, with a noticeable shift around November 2016. This change could be due to major events like the U.S. presidential election, which caused market volatility and impacted investor confidence. The drop in the Sharpe ratio suggests that big economic and political events can have a strong effect on returns, especially when looking at risk-adjusted performance.