# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbol <- c("GME", "MSFT", "INTC", "XXII", "TSLA")
prices <- tq_get(x = symbol,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GME" "INTC" "MSFT" "TSLA" "XXII"
weight <- c(0.2,0.2,0.2,0.2,0.2)
weight
## [1] 0.2 0.2 0.2 0.2 0.2
w_tbl <- tibble(symbols, weight)
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0439
## 2 2013-02-28 -0.0381
## 3 2013-03-28 0.102
## 4 2013-04-30 0.0861
## 5 2013-05-31 0.123
## 6 2013-06-28 0.101
## 7 2013-07-31 0.212
## 8 2013-08-30 -0.00238
## 9 2013-09-30 0.0468
## 10 2013-10-31 -0.0139
## # ℹ 50 more rows
rfr <- 0.0003
portfolio_SharpRatio <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpRatio
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.266
Calculate_rolling_SharpRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define Window
window <- 24
# Transform Data: calculate Rolling Sharp Ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl %>%
ggplot(aes(x = date,
y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
# Labeling
labs(x = NULL, y = "Rolling Sharp Ratio") +
annotate(geom = "text",
x = as.Date("2016-06-01"),
y = 0.5,
label = "This portfolio plummeted during 2015 into 2016
and began to rise at the end of 2017",
color = "red",
size = 5)
How has your portfolio performed over time? Provide dates of the
structural breaks, if any. The Code Along Assignment 9 had one
structural break in November 2016. What do you think the reason
is?
The Portfolio has not performed great, in 2015 through 2016 it sustained
a significant downhill slope leading to losses. It maintained an average
of -0.15 rolling Sharpe ratio throughout 2016 and bbegain to rise to a
peak of 0.25 rolling sharp at the end of 2017.