# Load the semPower package
library(semPower)
## Warning: package 'semPower' was built under R version 4.3.3
##
## ### Welcome to semPower 2.1.1 ###
##
## See https://github.com/moshagen/semPower for quick examples.
## See https://moshagen.github.io/semPower/ for a detailed manual.
##
## Please cite as:
## Moshagen, M., & Bader, M. (2023). semPower: General Power Analysis for Structural Equation Models.
## Behavior Research Methods, 56, 2901-2922. https://doi.org/10.3758/s13428-023-02254-7
# Specify the parameters for your power analysis
# Adjust these parameters based on your study design
effect_size <- 0.15 # expected effect size for the path
desired_power <- 0.8 # desired power level
alpha <- 0.05 # significance level
df <- 3 #df=number of observed variables−number of estimated parameters−1
effect_measure <- "RMSEA" #specify type of effect
# Run the a priori power analysis
sample_size_analysis <- semPower.aPriori(
effect = effect_size,
power = desired_power,
alpha = alpha,
df = df,
effect.measure = effect_measure
)
# Print the results, including required sample size
print(sample_size_analysis)
## $type
## [1] "a-priori"
##
## $alpha
## [1] 0.05
##
## $desiredBeta
## [1] 0.2
##
## $desiredPower
## [1] 0.8
##
## $impliedBeta
## [1] 0.1987022
##
## $impliedPower
## [1] 0.8012978
##
## $impliedAbratio
## [1] 0.2516328
##
## $impliedNCP
## [1] 10.935
##
## $fmin
## [1] 0.0675
##
## $fmin.g
## [1] 0.0675
##
## $effect
## [1] 0.15
##
## $effect.measure
## [1] "RMSEA"
##
## $requiredN
## [1] 163
##
## $requiredN.g
## [1] 163
##
## $df
## [1] 3
##
## $p
## NULL
##
## $chiCrit
## [1] 7.814728
##
## $bPrecisionWarning
## [1] FALSE
##
## $simulated
## [1] FALSE
##
## $plotShow
## [1] TRUE
##
## $plotLinewidth
## [1] 1
##
## $plotShowLabels
## [1] TRUE
##
## $rmsea
## [1] 0.15
##
## $mc
## [1] 0.9668132
##
## $gfi
## NULL
##
## $agfi
## NULL
##
## attr(,"class")
## [1] "semPower.aPriori"