# Load the semPower package
library(semPower)
## Warning: package 'semPower' was built under R version 4.3.3
## 
## ### Welcome to semPower 2.1.1 ###
## 
## See https://github.com/moshagen/semPower for quick examples.
## See https://moshagen.github.io/semPower/ for a detailed manual.
## 
## Please cite as:
## Moshagen, M., & Bader, M. (2023). semPower: General Power Analysis for Structural Equation Models.
## Behavior Research Methods, 56, 2901-2922. https://doi.org/10.3758/s13428-023-02254-7
# Specify the parameters for your power analysis
# Adjust these parameters based on your study design

effect_size <- 0.15   # expected effect size for the path 
desired_power <- 0.8 # desired power level
alpha <- 0.05        # significance level
df <- 3 #df=number of observed variables−number of estimated parameters−1
effect_measure <- "RMSEA" #specify type of effect

# Run the a priori power analysis
sample_size_analysis <- semPower.aPriori(
  effect = effect_size,
  power = desired_power,
  alpha = alpha,
  df = df,
  effect.measure = effect_measure
)


# Print the results, including required sample size
print(sample_size_analysis)
## $type
## [1] "a-priori"
## 
## $alpha
## [1] 0.05
## 
## $desiredBeta
## [1] 0.2
## 
## $desiredPower
## [1] 0.8
## 
## $impliedBeta
## [1] 0.1987022
## 
## $impliedPower
## [1] 0.8012978
## 
## $impliedAbratio
## [1] 0.2516328
## 
## $impliedNCP
## [1] 10.935
## 
## $fmin
## [1] 0.0675
## 
## $fmin.g
## [1] 0.0675
## 
## $effect
## [1] 0.15
## 
## $effect.measure
## [1] "RMSEA"
## 
## $requiredN
## [1] 163
## 
## $requiredN.g
## [1] 163
## 
## $df
## [1] 3
## 
## $p
## NULL
## 
## $chiCrit
## [1] 7.814728
## 
## $bPrecisionWarning
## [1] FALSE
## 
## $simulated
## [1] FALSE
## 
## $plotShow
## [1] TRUE
## 
## $plotLinewidth
## [1] 1
## 
## $plotShowLabels
## [1] TRUE
## 
## $rmsea
## [1] 0.15
## 
## $mc
## [1] 0.9668132
## 
## $gfi
## NULL
## 
## $agfi
## NULL
## 
## attr(,"class")
## [1] "semPower.aPriori"