DATA

This dataset was generated using statistics from the 2024 Joint Admissions and Matriculation Board (JAMB) examination to predict students performance. JAMB is a standardized test for university admissions in Nigeria. It aims to identify factors affecting student performance and support the development of targeted interventions to improve outcomes. Study_Hours_Per_Week : Number of hours spent studying per week. Attendance_Rate : Percentage of classes attended. JAMB_Score : Scores at JAMB Examination Access_To_Learning_Materials : Availability of educational resources (Yes, No). School_Type : Student’s type of School (Public, Private).

library(readr)
## Warning: package 'readr' was built under R version 4.3.3
jamb_exam_results1 = read.csv(file.choose(), header=TRUE, sep=";", dec=",")
head(jamb_exam_results1)
##   JAMB_Score Study_Hours_Per_Week Attendance_Rate School_Type
## 1        192                   22              78      Public
## 2        207                   14              88      Public
## 3        182                   29              87      Public
## 4        210                   29              99      Public
## 5        199                   12              98      Public
## 6        202                   25              85      Public
##   Access_To_Learning_Materials
## 1                          Yes
## 2                          Yes
## 3                          Yes
## 4                          Yes
## 5                          Yes
## 6                           No
str(jamb_exam_results1)
## 'data.frame':    5000 obs. of  5 variables:
##  $ JAMB_Score                  : int  192 207 182 210 199 202 251 129 220 157 ...
##  $ Study_Hours_Per_Week        : int  22 14 29 29 12 25 35 27 23 15 ...
##  $ Attendance_Rate             : int  78 88 87 99 98 85 85 75 85 79 ...
##  $ School_Type                 : chr  "Public" "Public" "Public" "Public" ...
##  $ Access_To_Learning_Materials: chr  "Yes" "Yes" "Yes" "Yes" ...
data1=jamb_exam_results1[1:3]
head(data1)
##   JAMB_Score Study_Hours_Per_Week Attendance_Rate
## 1        192                   22              78
## 2        207                   14              88
## 3        182                   29              87
## 4        210                   29              99
## 5        199                   12              98
## 6        202                   25              85

Uji Normalitas Multivariat

Hipotesis

H0 : Data berdistribusi normal multivariat H1 : Data tidak berdistribusi normal multivariat

Taraf Signifikansi

alpha = 5% = 0,05

library(MVN)
## Warning: package 'MVN' was built under R version 4.3.3
test = mvn(data1, mvnTest = "mardia", univariateTest = "SW", multivariatePlot = "qq")

print(test)
## $multivariateNormality
##              Test         Statistic              p value Result
## 1 Mardia Skewness  278.361435895676 5.77109125244121e-54     NO
## 2 Mardia Kurtosis -7.09233473926237 1.31872290864976e-12     NO
## 3             MVN              <NA>                 <NA>     NO
## 
## $univariateNormality
##           Test             Variable Statistic   p value Normality
## 1 Shapiro-Wilk      JAMB_Score         0.9676  <0.001      NO    
## 2 Shapiro-Wilk Study_Hours_Per_Week    0.9882  <0.001      NO    
## 3 Shapiro-Wilk   Attendance_Rate       0.9812  <0.001      NO    
## 
## $Descriptives
##                         n     Mean   Std.Dev Median Min Max 25th 75th
## JAMB_Score           5000 174.0746 47.616477    170 100 367  135  209
## Study_Hours_Per_Week 5000  19.5212  9.634569     19   0  40   13   26
## Attendance_Rate      5000  84.2352  9.485688     84  50 100   78   91
##                             Skew   Kurtosis
## JAMB_Score            0.48759701 -0.2030800
## Study_Hours_Per_Week  0.05363223 -0.5712452
## Attendance_Rate      -0.28637201 -0.2854344

Dikarenakan datanya tidak normal maka dilakukan pemotongan data, di mana data asli sebanyak 5000, dipotong menjadi 50 dengan data yang diambil adalah data ke 1 sampai 50

data2=jamb_exam_results1[1:50,1:3]
head(data2)
##   JAMB_Score Study_Hours_Per_Week Attendance_Rate
## 1        192                   22              78
## 2        207                   14              88
## 3        182                   29              87
## 4        210                   29              99
## 5        199                   12              98
## 6        202                   25              85
library(MVN)
test = mvn(data2, mvnTest = "mardia", univariateTest = "SW", multivariatePlot = "qq")

print(test)
## $multivariateNormality
##              Test         Statistic           p value Result
## 1 Mardia Skewness  12.6588680182531 0.243375091551997    YES
## 2 Mardia Kurtosis -0.76602059960464 0.443664045216431    YES
## 3             MVN              <NA>              <NA>    YES
## 
## $univariateNormality
##           Test             Variable Statistic   p value Normality
## 1 Shapiro-Wilk      JAMB_Score         0.9569    0.0662    YES   
## 2 Shapiro-Wilk Study_Hours_Per_Week    0.9820    0.6407    YES   
## 3 Shapiro-Wilk   Attendance_Rate       0.9573    0.0688    YES   
## 
## $Descriptives
##                       n   Mean   Std.Dev Median Min Max  25th   75th
## JAMB_Score           50 175.46 49.503333  165.5 100 274 140.0 207.00
## Study_Hours_Per_Week 50  20.98  9.575671   21.0   0  40  14.0  27.75
## Attendance_Rate      50  86.00  8.930571   87.0  58 100  79.5  91.00
##                             Skew   Kurtosis
## JAMB_Score            0.29626215 -0.9623107
## Study_Hours_Per_Week  0.01090125 -0.7414480
## Attendance_Rate      -0.52396698  0.2926658

Didapatkan p-value :

Mardia Skewness : 0.243375091551997

Mardia Kurtosis : 0.443664045216431

Kriteria Uji

(Skewness) tolak H0 jika p-value < α

(Kurtosis) tolak H0 jika p-value < α

Keputusan

(Skewness) p-value (0.243375091551997) > α (Terima H0)

(Kurtosis) p-value (0.443664045216431) > α (Terima H0)

Kesimpulan

Dengan tingkat signifikansi 0,05 diperoleh keputusan terima H0, yang menunjukkan bahwa data tersebut berdistribusi normal secara multivariat.

-------------------------------------------------------------------------------------------------------

Uji Homogenitas Multivariat

Hipotesis :

H0 = s1 = s2 = s3, matriks kovarians grup adalah sama.

H1 = Minimal ada satu matriks kovarians grup (sk) yang berbeda

Taraf Signifikansi :

alpha = 5%

library(biotools)
## Warning: package 'biotools' was built under R version 4.3.3
## Loading required package: MASS
## Warning: package 'MASS' was built under R version 4.3.3
## ---
## biotools version 4.2
sekolah <-jamb_exam_results1$School_Type[1:50]
print(sekolah)
##  [1] "Public"  "Public"  "Public"  "Public"  "Public"  "Public"  "Public" 
##  [8] "Public"  "Public"  "Public"  "Private" "Public"  "Public"  "Public" 
## [15] "Public"  "Public"  "Private" "Public"  "Public"  "Private" "Public" 
## [22] "Public"  "Public"  "Public"  "Private" "Public"  "Private" "Public" 
## [29] "Private" "Public"  "Private" "Public"  "Public"  "Public"  "Public" 
## [36] "Public"  "Public"  "Public"  "Public"  "Public"  "Private" "Public" 
## [43] "Public"  "Public"  "Public"  "Private" "Public"  "Public"  "Public" 
## [50] "Public"
akses <-jamb_exam_results1$Access_To_Learning_Materials[1:50]
print(akses)
##  [1] "Yes" "Yes" "Yes" "Yes" "Yes" "No"  "Yes" "Yes" "No"  "Yes" "No"  "Yes"
## [13] "Yes" "No"  "No"  "Yes" "Yes" "Yes" "Yes" "No"  "Yes" "No"  "Yes" "No" 
## [25] "Yes" "Yes" "No"  "Yes" "Yes" "No"  "Yes" "Yes" "Yes" "No"  "No"  "Yes"
## [37] "No"  "No"  "No"  "No"  "No"  "Yes" "Yes" "Yes" "Yes" "Yes" "Yes" "Yes"
## [49] "Yes" "No"

Statistik Uji :

hom1 <-boxM(data = data2, grouping = sekolah)
print(hom1)
## 
##  Box's M-test for Homogeneity of Covariance Matrices
## 
## data:  data2
## Chi-Sq (approx.) = 4.4818, df = 6, p-value = 0.6118

Kriteria Uji

Tolak H0 jika P-Value < alpha

Keputusan

P-Value = 0.6118 > alpha, maka Terima H0

Kesimpulan

Dengan tingkat signifikansi 0,05, diperoleh keputusan untuk menerima H0, sehingga dapat disimpulkan bahwa data memiliki matriks kovarians yang sama di setiap grup.

hom2 <-boxM(data = data2, grouping = akses)
print(hom2)
## 
##  Box's M-test for Homogeneity of Covariance Matrices
## 
## data:  data2
## Chi-Sq (approx.) = 1.9679, df = 6, p-value = 0.9226

Kriteria Uji

Tolak H0 jika P-Value < alpha

Keputusan

P-Value = 0.9226 > alpha, maka Terima H0

Kesimpulan

Dengan tingkat signifikansi 0,05, diperoleh keputusan untuk menerima H0, sehingga dapat disimpulkan bahwa data memiliki matriks kovarians yang sama di setiap grup.

-------------------------------------------------------------------------------------------------------

One Way Manova

Hipotesis

H0 : μ 1 = μ 2 = 0.

H1 : Terdapat minimal satu μi ≠ 0.

Taraf Signifikansi

alpha = 0,05

Statistik Uji

owm<-manova(cbind(data2$JAMB_Score, data2$Study_Hours_Per_Week, data2$Attendance_Rate)~akses)
sowm <-summary(owm)
print(sowm)
##           Df   Pillai approx F num Df den Df Pr(>F)
## akses      1 0.048108  0.77494      3     46  0.514
## Residuals 48

Kriteria Uji

Tolak H0 jika P-Value < α

Keputusan

P-Value = 0.514 > α (Terima H0)

Kesimpulan

Dengan taraf signifikansi 0,05, diperoleh keputusan terima H0. Sehingga belom ada cukup bukti untuk menyatakan akses ke materi pembelajaran mempengaruhi secara signifikan terhadap JAMB Score, waktu belajar per minggu, dan kehadiran.

-------------------------------------------------------------------------------------------------------

Two Way Manova

H0 : α 1 = α 2 = 0

H1 : Setidaknya ada satu αi yang tidak sama dengan 0

H0 : β1=β2=0

H1 : Setidaknya ada satu β j yang tidak sama dengan 0

H0 : αβ ij = 0

H1 : Setidaknya ada satu αβ ij yang tidak sama dengan 0

Statistik Uji

manova<-manova(cbind(data2$JAMB_Score, data2$Study_Hours_Per_Week, data2$Attendance_Rate)~akses*sekolah, data=data2)
sman<-summary(manova)
print(sman)
##               Df   Pillai approx F num Df den Df Pr(>F)
## akses          1 0.050818  0.78523      3     44 0.5086
## sekolah        1 0.082157  1.31283      3     44 0.2822
## akses:sekolah  1 0.089915  1.44905      3     44 0.2415
## Residuals     46

Kriteria Uji

Tolak H0 jika p-value < alpha

Keputusan

akses

p-value = 0.5086 > alpha (Terima H0)

sekolah

p-value = 0.2822 > alpha Terima H0)

akses : sekolah

p-value = 0.2415 > alpha (Terima H0)

Kesimpulan

Akses ke materi pembelajaran tidak berpengaruh signifikan terhadap JAMB Score, waktu belajar per minggu, dan kehadiran.

Jenis sekolah tidak berpengaruh signifikan terhadap JAMB Score, waktu belajar per minggu, dan kehadiran.

Interaksi antara akses ke materi pembelajaran dan jenis sekolah tidak berpengaruh signifikan terhadap JAMB Score, waktu belajar per minggu, dan kehadiran.