Load packages
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(ggplot2)
Load gene expression matrices and melt them
df_blgsp <- read_tsv("blgsp_gene_expr_matrix.tsv") %>%
gather(Sample, Expression, -(1:2))
df_centro <- read_tsv("centro_gene_expr_matrix.tsv") %>%
gather(Sample, Expression, -(1:2))
Plot MYC expression
myc_blgsp <- df_blgsp %>% filter(gene_symbol == "MYC") %>% mutate(Cohort = "BLGSP")
myc_centro <- df_centro %>% filter(gene_symbol == "MYC") %>% mutate(Cohort = "Centroblasts")
myc_all <- rbind(myc_blgsp, myc_centro)
interesting_samples <- c("BLGSP-71-06-00081")
p <- ggplot(data = myc_all, aes(x = Cohort, y = Expression)) +
geom_boxplot() +
scale_x_discrete(limits = c("Centroblasts", "BLGSP")) +
geom_point(data = filter(myc_all, Sample %in% interesting_samples),
color = "red", size = 3) +
geom_text(data = filter(myc_all, Sample %in% interesting_samples),
aes(label = Sample), hjust = -0.05, vjust = 0.5, color = "red", size = 4)
p

Plot IGKV2D (ENSG00000242534) expression
gene <- "ENSG00000242534"
interesting_samples <- c()
blgsp_expr <- df_blgsp %>% filter(gene_symbol == gene | gene_id == gene) %>% mutate(Cohort = "BLGSP")
centro_expr <- df_centro %>% filter(gene_symbol == gene | gene_id == gene) %>% mutate(Cohort = "Centroblasts")
all_expr <- rbind(blgsp_expr, centro_expr)
p <- ggplot(data = all_expr, aes(x = Cohort, y = Expression)) +
geom_boxplot() +
scale_x_discrete(limits = c("Centroblasts", "BLGSP")) +
geom_point(data = filter(all_expr, Sample %in% interesting_samples),
color = "red", size = 3) +
geom_text(data = filter(all_expr, Sample %in% interesting_samples),
aes(label = Sample), hjust = -0.05, vjust = 0.5, color = "red", size = 4)
p
