# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize expected returns and risk to make it easier to compare the performance of multiple assets and portfolios.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("X", "ZEUS", "CMC", "GOOG", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_return_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_return_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "CMC" "GOOG" "TSLA" "X" "ZEUS"
weights <- c(0.3, 0.2, 0.2, 0.15, 0.15)
weights
## [1] 0.30 0.20 0.20 0.15 0.15
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 CMC 0.3
## 2 GOOG 0.2
## 3 TSLA 0.2
## 4 X 0.15
## 5 ZEUS 0.15
portfolio_returns_tbl <- asset_return_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0525
## 2 2013-02-28 -0.0218
## 3 2013-03-28 0.0183
## 4 2013-04-30 0.0162
## 5 2013-05-31 0.181
## 6 2013-06-28 0.00154
## 7 2013-07-31 0.0809
## 8 2013-08-30 0.0193
## 9 2013-09-30 0.104
## 10 2013-10-31 0.0448
## # ℹ 50 more rows
portfolio_sd_tidyquant_builitin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = portfolio.returns,
performance_fun = table.Stats) %>%
select(Stdev) %>%
mutate(tq_sd = round(Stdev, 4))
portfolio_sd_tidyquant_builitin_percent
## # A tibble: 1 × 2
## Stdev tq_sd
## <dbl> <dbl>
## 1 0.0715 0.0715
portfolio_mean_tidyquant_builitin_percent <-
mean(portfolio_returns_tbl$portfolio.returns)
portfolio_mean_tidyquant_builitin_percent
## [1] 0.01462342
# Expected Returns vs Risk
sd_mean_tbl <- asset_return_tbl %>%
group_by(asset) %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Mean = ArithmeticMean, Stdev) %>%
ungroup() %>%
# Add portfolio sd
add_row(tibble(asset = "Portfolio",
Mean = portfolio_mean_tidyquant_builitin_percent,
Stdev = portfolio_sd_tidyquant_builitin_percent$tq_sd))
sd_mean_tbl
## # A tibble: 6 × 3
## asset Mean Stdev
## <chr> <dbl> <dbl>
## 1 CMC 0.0084 0.0763
## 2 GOOG 0.0181 0.0535
## 3 TSLA 0.037 0.145
## 4 X 0.0073 0.194
## 5 ZEUS -0.0001 0.173
## 6 Portfolio 0.0146 0.0715
sd_mean_tbl %>%
ggplot(aes(x = Stdev, y = Mean, color = asset)) +
geom_point() +
ggrepel::geom_label_repel(aes(label = asset))
How should you expect your portfolio to perform relative to its assets in the portfolio? Would you invest all your money in any of the individual stocks instead of the portfolio? Discuss both in terms of expected return and risk.
Based on the graph is has a low standard deviation meaning it is less volatile and less risky of an investment, however is also has a lower return than 2 of the assets google and tesla. Google even having a lower standard deviation while still having a higher return.