library(readr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
d <- read_csv("Desktop/Lab/Contextualizing Stigma and Trauma/LatineData_FINAL_Dataset_Scales.csv")
## New names:
## • `` -> `...1`
## Rows: 259 Columns: 48
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (4): GEN_8_TEXT, ETH_7_TEXT, BORN_1, AHELP
## dbl (43): ...1, AGE, GEN, EDU, EMP, INS_1, INS_2, ETH, INC, BORN, BORN_2, PR...
## lgl  (1): EDU_11_TEXT
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#data set with only variables of interest
# Select and rename columns in one step
d <- d %>%
  select(
    familism = PHFS_AVG,
    help_seeking_attitudes = MHSAS_AVG,
    self_stigma = SSOSH_AVG,
    public_stigma = SSRPH_AVG,
    act_help = AHELP,
    prev_help = PRE_HELP
  )

d$prev_help_new <- as.numeric(d$prev_help == 1)  # This will make 1=TRUE (1; has sought help) and 2=FALSE (0; has not sought help)

# Verify the recoding worked
table(d$prev_help, d$prev_help_new, useNA = "ifany")
##       
##          0   1 <NA>
##   1      0 175    0
##   2     83   0    0
##   <NA>   0   0    1
# Then in your models, replace prev_help with prev_help_new
#loading packages
library(lavaan)
## This is lavaan 0.6-16
## lavaan is FREE software! Please report any bugs.
library(semPlot)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(psych)
## 
## Attaching package: 'psych'
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## 
## The following object is masked from 'package:lavaan':
## 
##     cor2cov
library(jtools)
library(interactions)
library(ggplot2)
library(tidySEM)
## Loading required package: OpenMx
## OpenMx may run faster if it is compiled to take advantage of multiple cores.
## 
## Attaching package: 'OpenMx'
## 
## The following object is masked from 'package:psych':
## 
##     tr
## 
## Registered S3 method overwritten by 'tidySEM':
##   method          from  
##   predict.MxModel OpenMx
## 
## Attaching package: 'tidySEM'
## 
## The following object is masked from 'package:jtools':
## 
##     get_data

Working the Moderated Mediation

Piecewise assemly of the moderated mediation

# Analysis 1: A simple moderation with prev_help_new as a covariate
Mod_a_path <- lm(self_stigma ~ public_stigma * familism + prev_help_new, data = d)
jtools::summ(Mod_a_path, digits = 3)
Observations 258 (1 missing obs. deleted)
Dependent variable self_stigma
Type OLS linear regression
F(4,253) 42.398
R² 0.401
Adj. R² 0.392
Est. S.E. t val. p
(Intercept) 0.139 0.536 0.259 0.796
public_stigma 1.277 0.220 5.812 0.000
familism 0.259 0.137 1.892 0.060
prev_help_new -0.438 0.087 -5.046 0.000
public_stigma:familism -0.162 0.057 -2.833 0.005
Standard errors: OLS
# Graph interaction
interactions::interact_plot(Mod_a_path, pred = public_stigma, modx = familism) +
    ylim(1, 10)

# Probing the interaction with simple slopes
interactions::sim_slopes(Mod_a_path, pred = public_stigma, modx = familism)
## JOHNSON-NEYMAN INTERVAL 
## 
## When familism is OUTSIDE the interval [6.06, 17.53], the slope of
## public_stigma is p < .05.
## 
## Note: The range of observed values of familism is [1.00, 5.00]
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of public_stigma when familism = 2.689588 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.84   0.08    10.04   0.00
## 
## Slope of public_stigma when familism = 3.676744 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.68   0.06    11.10   0.00
## 
## Slope of public_stigma when familism = 4.663900 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.52   0.08     6.28   0.00
# Analysis 2: Another simple moderation with prev_help_new as a covariate
Mod_b_path <- lm(help_seeking_attitudes ~ public_stigma * familism + prev_help_new, data = d)
jtools::summ(Mod_b_path, digits = 3)
Observations 257 (2 missing obs. deleted)
Dependent variable help_seeking_attitudes
Type OLS linear regression
F(4,252) 18.932
R² 0.231
Adj. R² 0.219
Est. S.E. t val. p
(Intercept) 6.438 0.860 7.482 0.000
public_stigma -0.898 0.352 -2.551 0.011
familism 0.066 0.219 0.301 0.764
prev_help_new 0.516 0.138 3.754 0.000
public_stigma:familism 0.062 0.091 0.680 0.497
Standard errors: OLS
# Graph interaction
interactions::interact_plot(Mod_b_path, pred = public_stigma, modx = familism) +
    ylim(1, 10)

# Probing the interaction with simple slopes
interactions::sim_slopes(Mod_b_path, pred = public_stigma, modx = familism)
## JOHNSON-NEYMAN INTERVAL 
## 
## When familism is INSIDE the interval [-1.81, 6.31], the slope of
## public_stigma is p < .05.
## 
## Note: The range of observed values of familism is [1.00, 5.00]
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of public_stigma when familism = 2.694153 (- 1 SD): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.73   0.13    -5.44   0.00
## 
## Slope of public_stigma when familism = 3.680934 (Mean): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.67   0.10    -6.85   0.00
## 
## Slope of public_stigma when familism = 4.667715 (+ 1 SD): 
## 
##    Est.   S.E.   t val.      p
## ------- ------ -------- ------
##   -0.61   0.13    -4.63   0.00
# Analysis 3: A simple mediation including prev_help_new as a covariate
LMedModel <- "
          help_seeking_attitudes ~ b*self_stigma + c_p*public_stigma + c_prev_h*prev_help_new
          self_stigma ~ a*public_stigma + c_prev_s*prev_help_new
          
          # Intercepts
          self_stigma ~ self_stigma.mean*1
          help_seeking_attitudes ~ help_seeking_attitudes.mean*1
          
          indirect := a*b
          direct  := c_p
          total_c  := c_p + (a*b)
          "

set.seed(230925)  # Required for reproducible results because lavaan introduces randomness into the calculations
LMed_fit <- lavaan::sem(LMedModel, data = d, se = "bootstrap", missing = "fiml")
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: 1 cases were deleted due to missing values in 
##        exogenous variable(s), while fixed.x = TRUE.
LMed_Sum <- lavaan::summary(LMed_fit, standardized = T, rsq = T, ci = TRUE)
LMed_ParEsts <- lavaan::parameterEstimates(LMed_fit, boot.ci.type = "bca.simple", standardized = TRUE)
LMed_Sum
## lavaan 0.6.16 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##                                                   Used       Total
##   Number of observations                           258         259
##   Number of missing patterns                         2            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                            Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   help_seeking_attitudes ~                                             
##     slf_       (b)           -0.608    0.109   -5.558    0.000   -0.837
##     pbl_     (c_p)           -0.281    0.128   -2.200    0.028   -0.523
##     pr__ (c_prv_h)            0.228    0.138    1.658    0.097   -0.042
##   self_stigma ~                                                        
##     pbl_       (a)            0.699    0.070   10.003    0.000    0.556
##     pr__ (c_prv_s)           -0.415    0.095   -4.392    0.000   -0.587
##  ci.upper   Std.lv  Std.all
##                            
##    -0.389   -0.608   -0.435
##    -0.016   -0.281   -0.161
##     0.515    0.228    0.092
##                            
##     0.838    0.699    0.558
##    -0.232   -0.415   -0.233
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .slf_stg (sl_.)    1.047    0.158    6.628    0.000    0.732    1.355
##    .hlp_sk_ (h__.)    7.413    0.260   28.565    0.000    6.882    7.912
##    Std.lv  Std.all
##     1.047    1.259
##     7.413    6.386
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .hlp_skng_tttds    0.916    0.126    7.288    0.000    0.667    1.168
##    .self_stigma       0.438    0.038   11.404    0.000    0.357    0.510
##    Std.lv  Std.all
##     0.916    0.680
##     0.438    0.634
## 
## R-Square:
##                    Estimate
##     hlp_skng_tttds    0.320
##     self_stigma       0.366
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect         -0.425    0.091   -4.680    0.000   -0.627   -0.261
##     direct           -0.281    0.128   -2.199    0.028   -0.523   -0.016
##     total_c          -0.706    0.101   -6.975    0.000   -0.884   -0.492
##    Std.lv  Std.all
##    -0.425   -0.243
##    -0.281   -0.161
##    -0.706   -0.404
LMed_ParEsts
##                       lhs op                    rhs                       label
## 1  help_seeking_attitudes  ~            self_stigma                           b
## 2  help_seeking_attitudes  ~          public_stigma                         c_p
## 3  help_seeking_attitudes  ~          prev_help_new                    c_prev_h
## 4             self_stigma  ~          public_stigma                           a
## 5             self_stigma  ~          prev_help_new                    c_prev_s
## 6             self_stigma ~1                                   self_stigma.mean
## 7  help_seeking_attitudes ~1                        help_seeking_attitudes.mean
## 8  help_seeking_attitudes ~~ help_seeking_attitudes                            
## 9             self_stigma ~~            self_stigma                            
## 10          public_stigma ~~          public_stigma                            
## 11          public_stigma ~~          prev_help_new                            
## 12          prev_help_new ~~          prev_help_new                            
## 13          public_stigma ~1                                                   
## 14          prev_help_new ~1                                                   
## 15               indirect :=                    a*b                    indirect
## 16                 direct :=                    c_p                      direct
## 17                total_c :=              c_p+(a*b)                     total_c
##       est    se      z pvalue ci.lower ci.upper std.lv std.all std.nox
## 1  -0.608 0.109 -5.558  0.000   -0.798   -0.357 -0.608  -0.435  -0.435
## 2  -0.281 0.128 -2.200  0.028   -0.566   -0.054 -0.281  -0.161  -0.242
## 3   0.228 0.138  1.658  0.097   -0.032    0.529  0.228   0.092   0.197
## 4   0.699 0.070 10.003  0.000    0.557    0.838  0.699   0.558   0.841
## 5  -0.415 0.095 -4.392  0.000   -0.587   -0.232 -0.415  -0.233  -0.500
## 6   1.047 0.158  6.628  0.000    0.736    1.360  1.047   1.259   1.259
## 7   7.413 0.260 28.565  0.000    6.844    7.878  7.413   6.386   6.386
## 8   0.916 0.126  7.288  0.000    0.711    1.212  0.916   0.680   0.680
## 9   0.438 0.038 11.404  0.000    0.367    0.516  0.438   0.634   0.634
## 10  0.441 0.000     NA     NA    0.441    0.441  0.441   1.000   0.441
## 11  0.001 0.000     NA     NA    0.001    0.001  0.001   0.002   0.001
## 12  0.218 0.000     NA     NA    0.218    0.218  0.218   1.000   0.218
## 13  2.216 0.000     NA     NA    2.216    2.216  2.216   3.338   2.216
## 14  0.678 0.000     NA     NA    0.678    0.678  0.678   1.452   0.678
## 15 -0.425 0.091 -4.680  0.000   -0.601   -0.245 -0.425  -0.243  -0.366
## 16 -0.281 0.128 -2.199  0.028   -0.566   -0.054 -0.281  -0.161  -0.242
## 17 -0.706 0.101 -6.975  0.000   -0.894   -0.504 -0.706  -0.404  -0.608
# Analysis 4: The moderated mediation - a combined analysis including prev_help_new
Combined <- '
    # Equations
    self_stigma ~ a1*public_stigma + a2*familism + a3*public_stigma:familism + c_prev_s*prev_help_new
    help_seeking_attitudes ~ c_p1*public_stigma + c_p2*familism + c_p3*public_stigma:familism + b*self_stigma + c_prev_h*prev_help_new

    # Intercepts
    self_stigma ~ self_stigma.mean*1
    help_seeking_attitudes ~ help_seeking_attitudes.mean*1

    # Means, variances of W for simple slopes
    familism ~ familism.mean*1
    familism ~~ familism.var*familism
    
    # Index of moderated mediation
    imm := a3*b

    indirect.SDbelow := a1*b + imm*(familism.mean - sqrt(familism.var))
    indirect.mean := a1*b + imm*(familism.mean)
    indirect.SDabove := a1*b + imm*(familism.mean + sqrt(familism.var))

    direct.SDbelow := c_p1 + c_p3*(familism.mean - sqrt(familism.var)) 
    direct.Smean := c_p1 + c_p3*(familism.mean)
    direct.SDabove := c_p1 + c_p3*(familism.mean + sqrt(familism.var))
'

set.seed(230925) # Required for reproducible results
Combined_fit <- lavaan::sem(Combined, data = d, se = "bootstrap", missing = 'fiml', bootstrap = 1000)
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: 1 cases were deleted due to missing values in 
##        exogenous variable(s), while fixed.x = TRUE.
## Warning in lav_partable_vnames(FLAT, "ov.x", warn = TRUE): lavaan WARNING:
##     model syntax contains variance/covariance/intercept formulas
##     involving (an) exogenous variable(s): [familism]; These variables
##     will now be treated as random introducing additional free
##     parameters. If you wish to treat those variables as fixed, remove
##     these formulas from the model syntax. Otherwise, consider adding
##     the fixed.x = FALSE option.
cFITsum <- lavaan::summary(Combined_fit, standardized = TRUE, rsq = T, ci = TRUE)    
cParamEsts <- lavaan::parameterEstimates(Combined_fit, boot.ci.type = "bca.simple", standardized = TRUE)
cFITsum
## lavaan 0.6.16 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        15
## 
##                                                   Used       Total
##   Number of observations                           258         259
##   Number of missing patterns                         2            
## 
## Model Test User Model:
##                                                       
##   Test statistic                               620.749
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                            Estimate  Std.Err  z-value  P(>|z|) ci.lower
##   self_stigma ~                                                        
##     pbl_      (a1)            1.277    0.221    5.768    0.000    0.895
##     fmls      (a2)            0.259    0.130    1.988    0.047    0.008
##     pb_:      (a3)           -0.162    0.062   -2.620    0.009   -0.293
##     pr__ (c_prv_s)           -0.438    0.095   -4.606    0.000   -0.619
##   help_seeking_attitudes ~                                             
##     pbl_    (c_p1)           -0.142    0.424   -0.335    0.738   -0.846
##     fmls    (c_p2)            0.225    0.228    0.987    0.324   -0.168
##     pb_:    (c_p3)           -0.035    0.106   -0.332    0.740   -0.284
##     slf_       (b)           -0.580    0.109   -5.341    0.000   -0.809
##     pr__ (c_prv_h)            0.260    0.141    1.852    0.064   -0.025
##  ci.upper   Std.lv  Std.all
##                            
##     1.737    1.277    0.896
##     0.545    0.259    0.269
##    -0.054   -0.162   -0.547
##    -0.243   -0.438   -0.216
##                            
##     0.851   -0.142   -0.082
##     0.748    0.225    0.193
##     0.141   -0.035   -0.098
##    -0.369   -0.580   -0.478
##     0.542    0.260    0.106
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .slf_stg (sl_.)    0.139    0.486    0.285    0.775   -0.893    1.086
##    .hlp_sk_ (h__.)    6.478    0.913    7.095    0.000    4.317    7.987
##     familsm (fml.)    3.677    0.061   60.768    0.000    3.557    3.796
##    Std.lv  Std.all
##     0.139    0.147
##     6.478    5.634
##     3.677    3.732
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     familsm (fml.)    0.971    0.087   11.180    0.000    0.796    1.147
##    .slf_stg           0.414    0.037   11.054    0.000    0.329    0.479
##    .hlp_sk_           0.896    0.125    7.187    0.000    0.644    1.135
##    Std.lv  Std.all
##     0.971    1.000
##     0.414    0.462
##     0.896    0.678
## 
## R-Square:
##                    Estimate
##     self_stigma       0.538
##     hlp_skng_tttds    0.322
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     imm               0.094    0.039    2.397    0.017    0.031    0.187
##     indirect.SDblw   -0.488    0.101   -4.826    0.000   -0.714   -0.303
##     indirect.mean    -0.395    0.087   -4.562    0.000   -0.592   -0.243
##     indirect.SDabv   -0.302    0.088   -3.432    0.001   -0.503   -0.154
##     direct.SDbelow   -0.237    0.172   -1.377    0.169   -0.518    0.153
##     direct.Smean     -0.272    0.128   -2.129    0.033   -0.514   -0.001
##     direct.SDabove   -0.307    0.156   -1.967    0.049   -0.634   -0.004
##    Std.lv  Std.all
##     0.094    0.261
##    -0.488    0.286
##    -0.395    0.548
##    -0.302    0.809
##    -0.237   -0.350
##    -0.272   -0.448
##    -0.307   -0.546
cParamEsts
##                       lhs op                                          rhs
## 1             self_stigma  ~                                public_stigma
## 2             self_stigma  ~                                     familism
## 3             self_stigma  ~                       public_stigma:familism
## 4             self_stigma  ~                                prev_help_new
## 5  help_seeking_attitudes  ~                                public_stigma
## 6  help_seeking_attitudes  ~                                     familism
## 7  help_seeking_attitudes  ~                       public_stigma:familism
## 8  help_seeking_attitudes  ~                                  self_stigma
## 9  help_seeking_attitudes  ~                                prev_help_new
## 10            self_stigma ~1                                             
## 11 help_seeking_attitudes ~1                                             
## 12               familism ~1                                             
## 13               familism ~~                                     familism
## 14            self_stigma ~~                                  self_stigma
## 15 help_seeking_attitudes ~~                       help_seeking_attitudes
## 16          public_stigma ~~                                public_stigma
## 17          public_stigma ~~                       public_stigma:familism
## 18          public_stigma ~~                                prev_help_new
## 19 public_stigma:familism ~~                       public_stigma:familism
## 20 public_stigma:familism ~~                                prev_help_new
## 21          prev_help_new ~~                                prev_help_new
## 22          public_stigma ~1                                             
## 23 public_stigma:familism ~1                                             
## 24          prev_help_new ~1                                             
## 25                    imm :=                                         a3*b
## 26       indirect.SDbelow :=  a1*b+imm*(familism.mean-sqrt(familism.var))
## 27          indirect.mean :=                     a1*b+imm*(familism.mean)
## 28       indirect.SDabove :=  a1*b+imm*(familism.mean+sqrt(familism.var))
## 29         direct.SDbelow := c_p1+c_p3*(familism.mean-sqrt(familism.var))
## 30           direct.Smean :=                    c_p1+c_p3*(familism.mean)
## 31         direct.SDabove := c_p1+c_p3*(familism.mean+sqrt(familism.var))
##                          label    est    se      z pvalue ci.lower ci.upper
## 1                           a1  1.277 0.221  5.768  0.000    0.877    1.735
## 2                           a2  0.259 0.130  1.988  0.047    0.001    0.540
## 3                           a3 -0.162 0.062 -2.620  0.009   -0.292   -0.050
## 4                     c_prev_s -0.438 0.095 -4.606  0.000   -0.616   -0.238
## 5                         c_p1 -0.142 0.424 -0.335  0.738   -0.855    0.840
## 6                         c_p2  0.225 0.228  0.987  0.324   -0.166    0.754
## 7                         c_p3 -0.035 0.106 -0.332  0.740   -0.285    0.138
## 8                            b -0.580 0.109 -5.341  0.000   -0.779   -0.342
## 9                     c_prev_h  0.260 0.141  1.852  0.064   -0.008    0.560
## 10            self_stigma.mean  0.139 0.486  0.285  0.775   -0.867    1.114
## 11 help_seeking_attitudes.mean  6.478 0.913  7.095  0.000    4.274    7.964
## 12               familism.mean  3.677 0.061 60.768  0.000    3.566    3.801
## 13                familism.var  0.971 0.087 11.180  0.000    0.810    1.160
## 14                              0.414 0.037 11.054  0.000    0.350    0.499
## 15                              0.896 0.125  7.187  0.000    0.704    1.222
## 16                              0.441 0.000     NA     NA    0.441    0.441
## 17                              1.447 0.000     NA     NA    1.447    1.447
## 18                              0.001 0.000     NA     NA    0.001    0.001
## 19                             10.211 0.000     NA     NA   10.211   10.211
## 20                             -0.084 0.000     NA     NA   -0.084   -0.084
## 21                              0.218 0.000     NA     NA    0.218    0.218
## 22                              2.216 0.000     NA     NA    2.216    2.216
## 23                              8.070 0.000     NA     NA    8.070    8.070
## 24                              0.678 0.000     NA     NA    0.678    0.678
## 25                         imm  0.094 0.039  2.397  0.017    0.029    0.182
## 26            indirect.SDbelow -0.488 0.101 -4.826  0.000   -0.684   -0.278
## 27               indirect.mean -0.395 0.087 -4.562  0.000   -0.570   -0.236
## 28            indirect.SDabove -0.302 0.088 -3.432  0.001   -0.508   -0.156
## 29              direct.SDbelow -0.237 0.172 -1.377  0.169   -0.542    0.128
## 30                direct.Smean -0.272 0.128 -2.129  0.033   -0.564   -0.048
## 31              direct.SDabove -0.307 0.156 -1.967  0.049   -0.675   -0.039
##    std.lv std.all std.nox
## 1   1.277   0.896   1.349
## 2   0.259   0.269   0.181
## 3  -0.162  -0.547  -0.171
## 4  -0.438  -0.216  -0.463
## 5  -0.142  -0.082  -0.124
## 6   0.225   0.193   0.130
## 7  -0.035  -0.098  -0.031
## 8  -0.580  -0.478  -0.478
## 9   0.260   0.106   0.226
## 10  0.139   0.147   0.147
## 11  6.478   5.634   5.634
## 12  3.677   3.732   3.732
## 13  0.971   1.000   1.000
## 14  0.414   0.462   0.462
## 15  0.896   0.678   0.678
## 16  0.441   1.000   0.441
## 17  1.447   0.682   1.447
## 18  0.001   0.002   0.001
## 19 10.211   1.000  10.211
## 20 -0.084  -0.057  -0.084
## 21  0.218   1.000   0.218
## 22  2.216   3.338   2.216
## 23  8.070   2.526   8.070
## 24  0.678   1.452   0.678
## 25  0.094   0.261   0.082
## 26 -0.488   0.286  -0.421
## 27 -0.395   0.548  -0.339
## 28 -0.302   0.809  -0.257
## 29 -0.237  -0.350  -0.207
## 30 -0.272  -0.448  -0.238
## 31 -0.307  -0.546  -0.269