library(readr)
library(readxl)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Set working directory
setwd("/Users/melissalagunas/Desktop/Lab/DISSERTATION")

# Read datasets
quant_df <- read_csv("quant_data.csv")
## New names:
## • `` -> `...1`
## Rows: 230 Columns: 18
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (18): ...1, age, gender, race, US_born, sexual_orientation, employment_s...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
qual_df <- read_csv("qual_df.csv")
## New names:
## Rows: 187 Columns: 4
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (3): year_education, SS_13_TEXT, PD dbl (1): ...1
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
# Add participant ID to each dataset
quant_df <- quant_df %>%
  mutate(Participant_ID = row_number())

qual_df <- qual_df %>%
  mutate(Participant_ID = row_number())

# Merge datasets on Participant_ID
merged_df <- left_join(quant_df, qual_df, by = "Participant_ID")

DEMOGRAPHIC FREQUENCIES

# Summary of all demographic variables

library(dplyr)

# Get frequencies for each variable
gender_freq <- quant_df %>% count(gender)
race_freq <- quant_df %>% count(race)
sexual_orientation_freq <- quant_df %>% count(sexual_orientation)
US_born_freq <- quant_df %>% count(US_born)
income_freq <- quant_df %>% count(income)
fam_income_freq <- quant_df %>% count(fam_income)
religion_freq <- quant_df %>% count(religion)
education_freq <- quant_df %>% count(education)
employment_status_freq <- quant_df %>% count(employment_status)

# Print the frequency tables
gender_freq
## # A tibble: 7 × 2
##   gender     n
##    <dbl> <int>
## 1      1    94
## 2      2    64
## 3      3     3
## 4      4     9
## 5      5     6
## 6      6     1
## 7      7    53
race_freq
## # A tibble: 8 × 2
##    race     n
##   <dbl> <int>
## 1     1    30
## 2     2    25
## 3     3    11
## 4     4     2
## 5     5    35
## 6     6    56
## 7     7     3
## 8     9    68
sexual_orientation_freq
## # A tibble: 8 × 2
##   sexual_orientation     n
##                <dbl> <int>
## 1                  1    22
## 2                  2    16
## 3                  3     3
## 4                  5   125
## 5                  6     4
## 6                  7     4
## 7                  8    55
## 8                  9     1
US_born_freq
## # A tibble: 3 × 2
##   US_born     n
##     <dbl> <int>
## 1       1   167
## 2       2    10
## 3      NA    53
income_freq
## # A tibble: 10 × 2
##    income     n
##     <dbl> <int>
##  1      1     7
##  2      2    20
##  3      3    23
##  4      4    18
##  5      5    17
##  6      6    18
##  7      7    14
##  8      8    31
##  9      9    32
## 10     10    50
fam_income_freq
## # A tibble: 10 × 2
##    fam_income     n
##         <dbl> <int>
##  1          1     8
##  2          2    21
##  3          3    22
##  4          4    25
##  5          5    25
##  6          6    27
##  7          7    10
##  8          8    26
##  9          9    16
## 10         10    50
religion_freq
## # A tibble: 14 × 2
##    religion     n
##       <dbl> <int>
##  1        1     9
##  2        2    17
##  3        3     6
##  4        4    25
##  5        5    37
##  6        6     4
##  7        7     1
##  8        8     5
##  9       10     9
## 10       11     1
## 11       12     1
## 12       13     4
## 13       14    97
## 14       15    14
education_freq
## # A tibble: 8 × 2
##   education     n
##       <dbl> <int>
## 1         1     8
## 2         2    10
## 3         3    63
## 4         4    46
## 5         5    23
## 6         6    26
## 7         7     1
## 8         8    53
employment_status_freq
## # A tibble: 4 × 2
##   employment_status     n
##               <dbl> <int>
## 1                 1   188
## 2                 2    31
## 3                 3     1
## 4                NA    10

CORRELATION

# Correlation
library(dplyr)
library(apaTables)

# Subset your quant_dfa to include only the columns of interest
subset_df <- quant_df %>%
  select(OC_AVG, SS_AVG, PSNQ_AVG, BRS_AVG, SBS_AVG, PF_AVG, CS_AVG)

# Compute and save the correlation table
cor_df <- apa.cor.table(subset_df, 
                        table.number = 1, 
                        show.sig.stars = TRUE, 
                        landscape = TRUE, 
                        filename = "correlation_table.doc")

# Ensure the table was created successfully
if (file.exists("correlation_table.doc")) {
  cat("Correlation table successfully saved as 'correlation_table.doc'.\n")
} else {
  cat("Error: Correlation table was not saved.\n")
}
## Correlation table successfully saved as 'correlation_table.doc'.
# Print the correlation table object to check contents
print(cor_df)
## 
## 
## Table 1 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable    M    SD   1           2          3          4          
##   1. OC_AVG   3.68 0.90                                              
##                                                                      
##   2. SS_AVG   5.39 0.82 .26**                                        
##                         [.13, .38]                                   
##                                                                      
##   3. PSNQ_AVG 5.63 0.79 .23**       .72**                            
##                         [.11, .35]  [.66, .78]                       
##                                                                      
##   4. BRS_AVG  3.21 0.45 .00         .19**      .20**                 
##                         [-.13, .14] [.06, .31] [.07, .32]            
##                                                                      
##   5. SBS_AVG  3.75 0.66 .28**       .73**      .72**      .20**      
##                         [.16, .40]  [.67, .79] [.65, .77] [.08, .33] 
##                                                                      
##   6. PF_AVG   5.80 0.87 .23**       .72**      .80**      .35**      
##                         [.10, .35]  [.65, .77] [.75, .84] [.23, .46] 
##                                                                      
##   7. CS_AVG   4.08 0.65 .17*        .51**      .69**      .10        
##                         [.04, .29]  [.40, .60] [.62, .75] [-.03, .23]
##                                                                      
##   5          6         
##                        
##                        
##                        
##                        
##                        
##                        
##                        
##                        
##                        
##                        
##                        
##                        
##                        
##                        
##   .74**                
##   [.68, .80]           
##                        
##   .49**      .64**     
##   [.38, .58] [.55, .71]
##                        
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

MAIN ANALYSES

SENSE OF BELONGING AS OUTCOME

#Simple Mediation - Perceived Network Quality

# Define the simple mediation model
simple_med_PSNQ_SBS <- "
    SBS_AVG ~ b1*PSNQ_AVG + c_p*SS_AVG
    PSNQ_AVG ~ a1*SS_AVG

    # Define indirect and direct effects
    indirect := a1 * b1
    total_c := c_p + indirect
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the simple mediation model using lavaan's sem function
simple_fit <- lavaan::sem(simple_med_PSNQ_SBS, data = quant_df, se = "bootstrap", 
                          missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
sfit_sum <- lavaan::summary(simple_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
sfit_ParEsts <- lavaan::parameterEstimates(simple_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(sfit_sum)
## lavaan 0.6.16 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           230
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               385.736
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -308.374
##   Loglikelihood unrestricted model (H1)       -308.374
##                                                       
##   Akaike (AIC)                                 630.747
##   Bayesian (BIC)                               654.814
##   Sample-size adjusted Bayesian (SABIC)        632.628
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   SBS_AVG ~                                                             
##     PSNQ_AVG  (b1)    0.326    0.069    4.750    0.000    0.189    0.456
##     SS_AVG   (c_p)    0.367    0.064    5.711    0.000    0.253    0.493
##   PSNQ_AVG ~                                                            
##     SS_AVG    (a1)    0.702    0.048   14.482    0.000    0.606    0.801
##    Std.lv  Std.all
##                   
##     0.326    0.388
##     0.367    0.452
##                   
##     0.702    0.725
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SBS_AVG          -0.058    0.194   -0.297    0.767   -0.476    0.306
##    .PSNQ_AVG          1.843    0.269    6.839    0.000    1.304    2.385
##    Std.lv  Std.all
##    -0.058   -0.087
##     1.843    2.338
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SBS_AVG           0.171    0.016   10.808    0.000    0.138    0.199
##    .PSNQ_AVG          0.295    0.034    8.735    0.000    0.227    0.362
##    Std.lv  Std.all
##     0.171    0.391
##     0.295    0.475
## 
## R-Square:
##                    Estimate
##     SBS_AVG           0.609
##     PSNQ_AVG          0.525
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect          0.229    0.047    4.852    0.000    0.134    0.316
##     total_c           0.595    0.038   15.865    0.000    0.522    0.669
##     direct            0.367    0.064    5.708    0.000    0.253    0.493
##    Std.lv  Std.all
##     0.229    0.281
##     0.595    0.733
##     0.367    0.452
print(sfit_ParEsts)
##         lhs op          rhs    label    est    se      z pvalue ci.lower
## 1   SBS_AVG  ~     PSNQ_AVG       b1  0.326 0.069  4.750  0.000    0.196
## 2   SBS_AVG  ~       SS_AVG      c_p  0.367 0.064  5.711  0.000    0.242
## 3  PSNQ_AVG  ~       SS_AVG       a1  0.702 0.048 14.482  0.000    0.597
## 4   SBS_AVG ~~      SBS_AVG           0.171 0.016 10.808  0.000    0.144
## 5  PSNQ_AVG ~~     PSNQ_AVG           0.295 0.034  8.735  0.000    0.241
## 6    SS_AVG ~~       SS_AVG           0.663 0.000     NA     NA    0.663
## 7   SBS_AVG ~1                       -0.058 0.194 -0.297  0.767   -0.458
## 8  PSNQ_AVG ~1                        1.843 0.269  6.839  0.000    1.342
## 9    SS_AVG ~1                        5.394 0.000     NA     NA    5.394
## 10 indirect :=        a1*b1 indirect  0.229 0.047  4.852  0.000    0.141
## 11  total_c := c_p+indirect  total_c  0.595 0.038 15.865  0.000    0.515
## 12   direct :=          c_p   direct  0.367 0.064  5.708  0.000    0.242
##    ci.upper std.lv std.all std.nox
## 1     0.459  0.326   0.388   0.388
## 2     0.485  0.367   0.452   0.555
## 3     0.790  0.702   0.725   0.890
## 4     0.207  0.171   0.391   0.391
## 5     0.381  0.295   0.475   0.475
## 6     0.663  0.663   1.000   0.663
## 7     0.312 -0.058  -0.087  -0.087
## 8     2.413  1.843   2.338   2.338
## 9     5.394  5.394   6.627   5.394
## 10    0.327  0.229   0.281   0.346
## 11    0.662  0.595   0.733   0.901
## 12    0.485  0.367   0.452   0.555
#Simple Mediation -Resilience
# Define the simple mediation model

simple_med_BRS_SBS <- "
    SBS_AVG ~ b1*BRS_AVG + c_p*SS_AVG
    BRS_AVG ~ a1*SS_AVG

    # Define indirect and direct effects
    indirect := a1 * b1
    total_c := c_p + indirect
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the simple mediation model using lavaan's sem function
simple_fit <- lavaan::sem(simple_med_BRS_SBS, data = quant_df, se = "bootstrap", 
                          missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
sfit_sum <- lavaan::summary(simple_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
sfit_ParEsts <- lavaan::parameterEstimates(simple_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(sfit_sum)
## lavaan 0.6.16 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           230
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               188.032
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -277.337
##   Loglikelihood unrestricted model (H1)       -277.337
##                                                       
##   Akaike (AIC)                                 568.675
##   Bayesian (BIC)                               592.741
##   Sample-size adjusted Bayesian (SABIC)        570.555
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   SBS_AVG ~                                                             
##     BRS_AVG   (b1)    0.097    0.067    1.447    0.148   -0.036    0.230
##     SS_AVG   (c_p)    0.585    0.039   14.924    0.000    0.508    0.663
##   BRS_AVG ~                                                             
##     SS_AVG    (a1)    0.107    0.037    2.881    0.004    0.035    0.181
##    Std.lv  Std.all
##                   
##     0.097    0.066
##     0.585    0.720
##                   
##     0.107    0.195
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SBS_AVG           0.287    0.241    1.188    0.235   -0.196    0.749
##    .BRS_AVG           2.633    0.200   13.154    0.000    2.223    3.013
##    Std.lv  Std.all
##     0.287    0.434
##     2.633    5.882
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SBS_AVG           0.200    0.022    9.090    0.000    0.157    0.244
##    .BRS_AVG           0.193    0.018   10.681    0.000    0.155    0.226
##    Std.lv  Std.all
##     0.200    0.458
##     0.193    0.962
## 
## R-Square:
##                    Estimate
##     SBS_AVG           0.542
##     BRS_AVG           0.038
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect          0.010    0.008    1.262    0.207   -0.004    0.028
##     total_c           0.595    0.038   15.865    0.000    0.522    0.669
##     direct            0.585    0.039   14.916    0.000    0.508    0.663
##    Std.lv  Std.all
##     0.010    0.013
##     0.595    0.733
##     0.585    0.720
print(sfit_ParEsts)
##         lhs op          rhs    label   est    se      z pvalue ci.lower
## 1   SBS_AVG  ~      BRS_AVG       b1 0.097 0.067  1.447  0.148   -0.035
## 2   SBS_AVG  ~       SS_AVG      c_p 0.585 0.039 14.924  0.000    0.498
## 3   BRS_AVG  ~       SS_AVG       a1 0.107 0.037  2.881  0.004    0.035
## 4   SBS_AVG ~~      SBS_AVG          0.200 0.022  9.090  0.000    0.163
## 5   BRS_AVG ~~      BRS_AVG          0.193 0.018 10.681  0.000    0.159
## 6    SS_AVG ~~       SS_AVG          0.663 0.000     NA     NA    0.663
## 7   SBS_AVG ~1                       0.287 0.241  1.188  0.235   -0.181
## 8   BRS_AVG ~1                       2.633 0.200 13.154  0.000    2.229
## 9    SS_AVG ~1                       5.394 0.000     NA     NA    5.394
## 10 indirect :=        a1*b1 indirect 0.010 0.008  1.262  0.207   -0.002
## 11  total_c := c_p+indirect  total_c 0.595 0.038 15.865  0.000    0.515
## 12   direct :=          c_p   direct 0.585 0.039 14.916  0.000    0.498
##    ci.upper std.lv std.all std.nox
## 1     0.235  0.097   0.066   0.066
## 2     0.650  0.585   0.720   0.885
## 3     0.181  0.107   0.195   0.239
## 4     0.250  0.200   0.458   0.458
## 5     0.233  0.193   0.962   0.962
## 6     0.663  0.663   1.000   0.663
## 7     0.775  0.287   0.434   0.434
## 8     3.020  2.633   5.882   5.882
## 9     5.394  5.394   6.627   5.394
## 10    0.033  0.010   0.013   0.016
## 11    0.662  0.595   0.733   0.901
## 12    0.650  0.585   0.720   0.885
# Parallel Mediation
parallel_med_SBS <- "
    SBS_AVG ~ b1*PSNQ_AVG + b2*BRS_AVG + c_p*SS_AVG
    PSNQ_AVG ~ a1*SS_AVG
    BRS_AVG ~ a2*SS_AVG

    # Define indirect effects
    indirect1 := a1 * b1
    indirect2 := a2 * b2
    contrast := indirect1 - indirect2
    total_indirects := indirect1 + indirect2
    total_c := c_p + total_indirects
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the parallel mediation model using lavaan's sem function
parallel_fit <- lavaan::sem(parallel_med_SBS, data = quant_df, se = "bootstrap", 
                            missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
pfit_sum <- lavaan::summary(parallel_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
pfit_ParEsts <- lavaan::parameterEstimates(parallel_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(pfit_sum)
## lavaan 0.6.16 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
## 
##   Number of observations                           230
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 2.019
##   Degrees of freedom                                 1
##   P-value (Chi-square)                           0.155
## 
## Model Test Baseline Model:
## 
##   Test statistic                               397.313
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997
##   Tucker-Lewis Index (TLI)                       0.984
##                                                       
##   Robust Comparative Fit Index (CFI)             0.997
##   Robust Tucker-Lewis Index (TLI)                0.984
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -443.773
##   Loglikelihood unrestricted model (H1)       -442.763
##                                                       
##   Akaike (AIC)                                 909.545
##   Bayesian (BIC)                               947.364
##   Sample-size adjusted Bayesian (SABIC)        912.501
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.067
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.202
##   P-value H_0: RMSEA <= 0.050                    0.269
##   P-value H_0: RMSEA >= 0.080                    0.578
##                                                       
##   Robust RMSEA                                   0.067
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.204
##   P-value H_0: Robust RMSEA <= 0.050             0.266
##   P-value H_0: Robust RMSEA >= 0.080             0.583
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.019
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   SBS_AVG ~                                                             
##     PSNQ_AVG  (b1)    0.321    0.068    4.692    0.000    0.188    0.450
##     BRS_AVG   (b2)    0.060    0.061    0.999    0.318   -0.061    0.178
##     SS_AVG   (c_p)    0.364    0.065    5.635    0.000    0.247    0.492
##   PSNQ_AVG ~                                                            
##     SS_AVG    (a1)    0.702    0.048   14.480    0.000    0.606    0.801
##   BRS_AVG ~                                                             
##     SS_AVG    (a2)    0.107    0.037    2.870    0.004    0.035    0.181
##    Std.lv  Std.all
##                   
##     0.321    0.383
##     0.060    0.041
##     0.364    0.448
##                   
##     0.702    0.725
##                   
##     0.107    0.194
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SBS_AVG          -0.209    0.227   -0.918    0.359   -0.655    0.227
##    .PSNQ_AVG          1.843    0.269    6.838    0.000    1.304    2.385
##    .BRS_AVG           2.635    0.200   13.149    0.000    2.225    3.013
##    Std.lv  Std.all
##    -0.209   -0.316
##     1.843    2.338
##     2.635    5.886
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .SBS_AVG           0.170    0.015   11.002    0.000    0.138    0.197
##    .PSNQ_AVG          0.295    0.034    8.735    0.000    0.227    0.362
##    .BRS_AVG           0.193    0.018   10.680    0.000    0.155    0.226
##    Std.lv  Std.all
##     0.170    0.390
##     0.295    0.475
##     0.193    0.962
## 
## R-Square:
##                    Estimate
##     SBS_AVG           0.610
##     PSNQ_AVG          0.525
##     BRS_AVG           0.038
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect1         0.225    0.047    4.801    0.000    0.132    0.316
##     indirect2         0.006    0.007    0.916    0.360   -0.007    0.021
##     contrast          0.219    0.048    4.586    0.000    0.122    0.308
##     total_indircts    0.232    0.047    4.911    0.000    0.138    0.321
##     total_c           0.595    0.038   15.865    0.000    0.522    0.669
##     direct            0.364    0.065    5.633    0.000    0.247    0.492
##    Std.lv  Std.all
##     0.225    0.278
##     0.006    0.008
##     0.219    0.270
##     0.232    0.286
##     0.595    0.734
##     0.364    0.448
print(pfit_ParEsts)
##                lhs op                 rhs           label    est    se      z
## 1          SBS_AVG  ~            PSNQ_AVG              b1  0.321 0.068  4.692
## 2          SBS_AVG  ~             BRS_AVG              b2  0.060 0.061  0.999
## 3          SBS_AVG  ~              SS_AVG             c_p  0.364 0.065  5.635
## 4         PSNQ_AVG  ~              SS_AVG              a1  0.702 0.048 14.480
## 5          BRS_AVG  ~              SS_AVG              a2  0.107 0.037  2.870
## 6          SBS_AVG ~~             SBS_AVG                  0.170 0.015 11.002
## 7         PSNQ_AVG ~~            PSNQ_AVG                  0.295 0.034  8.735
## 8          BRS_AVG ~~             BRS_AVG                  0.193 0.018 10.680
## 9           SS_AVG ~~              SS_AVG                  0.663 0.000     NA
## 10         SBS_AVG ~1                                     -0.209 0.227 -0.918
## 11        PSNQ_AVG ~1                                      1.843 0.269  6.838
## 12         BRS_AVG ~1                                      2.635 0.200 13.149
## 13          SS_AVG ~1                                      5.394 0.000     NA
## 14       indirect1 :=               a1*b1       indirect1  0.225 0.047  4.801
## 15       indirect2 :=               a2*b2       indirect2  0.006 0.007  0.916
## 16        contrast := indirect1-indirect2        contrast  0.219 0.048  4.586
## 17 total_indirects := indirect1+indirect2 total_indirects  0.232 0.047  4.911
## 18         total_c := c_p+total_indirects         total_c  0.595 0.038 15.865
## 19          direct :=                 c_p          direct  0.364 0.065  5.633
##    pvalue ci.lower ci.upper std.lv std.all std.nox
## 1   0.000    0.192    0.454  0.321   0.383   0.383
## 2   0.318   -0.060    0.180  0.060   0.041   0.041
## 3   0.000    0.223    0.482  0.364   0.448   0.551
## 4   0.000    0.597    0.789  0.702   0.725   0.890
## 5   0.004    0.034    0.179  0.107   0.194   0.239
## 6   0.000    0.144    0.207  0.170   0.390   0.390
## 7   0.000    0.241    0.381  0.295   0.475   0.475
## 8   0.000    0.159    0.233  0.193   0.962   0.962
## 9      NA    0.663    0.663  0.663   1.000   0.663
## 10  0.359   -0.624    0.247 -0.209  -0.316  -0.316
## 11  0.000    1.344    2.414  1.843   2.338   2.338
## 12  0.000    2.231    3.025  2.635   5.886   5.886
## 13     NA    5.394    5.394  5.394   6.627   5.394
## 14  0.000    0.137    0.322  0.225   0.278   0.341
## 15  0.360   -0.005    0.025  0.006   0.008   0.010
## 16  0.000    0.129    0.320  0.219   0.270   0.331
## 17  0.000    0.145    0.329  0.232   0.286   0.351
## 18  0.000    0.515    0.662  0.595   0.734   0.902
## 19  0.000    0.223    0.482  0.364   0.448   0.551

PROFESSIONAL FLOURISHING AS OUTCOME

#Perceived Network Quality
simple_med_PSNQ_PF <- "
    PF_AVG ~ b1*PSNQ_AVG + c_p*SS_AVG
    PSNQ_AVG ~ a1*SS_AVG

    # Define indirect and direct effects
    indirect := a1 * b1
    total_c := c_p + indirect
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the simple mediation model using lavaan's sem function
simple_fit <- lavaan::sem(simple_med_PSNQ_PF, data = quant_df, se = "bootstrap", 
                          missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
sfit_sum <- lavaan::summary(simple_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
sfit_ParEsts <- lavaan::parameterEstimates(simple_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(sfit_sum)
## lavaan 0.6.16 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           230
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               430.846
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -347.304
##   Loglikelihood unrestricted model (H1)       -347.304
##                                                       
##   Akaike (AIC)                                 708.608
##   Bayesian (BIC)                               732.675
##   Sample-size adjusted Bayesian (SABIC)        710.489
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   PF_AVG ~                                                              
##     PSNQ_AVG  (b1)    0.648    0.076    8.494    0.000    0.492    0.811
##     SS_AVG   (c_p)    0.303    0.073    4.119    0.000    0.155    0.451
##   PSNQ_AVG ~                                                            
##     SS_AVG    (a1)    0.707    0.048   14.640    0.000    0.612    0.805
##    Std.lv  Std.all
##                   
##     0.648    0.594
##     0.303    0.285
##                   
##     0.707    0.727
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .PF_AVG            0.529    0.267    1.978    0.048   -0.006    1.031
##    .PSNQ_AVG          1.812    0.268    6.751    0.000    1.289    2.348
##    Std.lv  Std.all
##     0.529    0.612
##     1.812    2.290
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .PF_AVG            0.239    0.032    7.385    0.000    0.175    0.299
##    .PSNQ_AVG          0.296    0.034    8.733    0.000    0.227    0.362
##    Std.lv  Std.all
##     0.239    0.320
##     0.296    0.472
## 
## R-Square:
##                    Estimate
##     PF_AVG            0.680
##     PSNQ_AVG          0.528
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect          0.458    0.063    7.268    0.000    0.347    0.591
##     total_c           0.760    0.056   13.595    0.000    0.654    0.877
##     direct            0.303    0.073    4.117    0.000    0.155    0.451
##    Std.lv  Std.all
##     0.458    0.431
##     0.760    0.717
##     0.303    0.285
print(sfit_ParEsts)
##         lhs op          rhs    label   est    se      z pvalue ci.lower
## 1    PF_AVG  ~     PSNQ_AVG       b1 0.648 0.076  8.494  0.000    0.488
## 2    PF_AVG  ~       SS_AVG      c_p 0.303 0.073  4.119  0.000    0.160
## 3  PSNQ_AVG  ~       SS_AVG       a1 0.707 0.048 14.640  0.000    0.605
## 4    PF_AVG ~~       PF_AVG          0.239 0.032  7.385  0.000    0.183
## 5  PSNQ_AVG ~~     PSNQ_AVG          0.296 0.034  8.733  0.000    0.242
## 6    SS_AVG ~~       SS_AVG          0.663 0.000     NA     NA    0.663
## 7    PF_AVG ~1                       0.529 0.267  1.978  0.048    0.008
## 8  PSNQ_AVG ~1                       1.812 0.268  6.751  0.000    1.305
## 9    SS_AVG ~1                       5.394 0.000     NA     NA    5.394
## 10 indirect :=        a1*b1 indirect 0.458 0.063  7.268  0.000    0.342
## 11  total_c := c_p+indirect  total_c 0.760 0.056 13.595  0.000    0.652
## 12   direct :=          c_p   direct 0.303 0.073  4.117  0.000    0.160
##    ci.upper std.lv std.all std.nox
## 1     0.799  0.648   0.594   0.594
## 2     0.466  0.303   0.285   0.350
## 3     0.798  0.707   0.727   0.893
## 4     0.307  0.239   0.320   0.320
## 5     0.382  0.296   0.472   0.472
## 6     0.663  0.663   1.000   0.663
## 7     1.063  0.529   0.612   0.612
## 8     2.366  1.812   2.290   2.290
## 9     5.394  5.394   6.627   5.394
## 10    0.583  0.458   0.431   0.530
## 11    0.874  0.760   0.717   0.880
## 12    0.466  0.303   0.285   0.350
#Resilience
simple_med_BRS_PF <- "
    PF_AVG ~ b1*BRS_AVG + c_p*SS_AVG
    BRS_AVG ~ a1*SS_AVG

    # Define indirect and direct effects
    indirect := a1 * b1
    total_c := c_p + indirect
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the simple mediation model using lavaan's sem function
simple_fit <- lavaan::sem(simple_med_BRS_PF, data = quant_df, se = "bootstrap", 
                          missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
sfit_sum <- lavaan::summary(simple_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
sfit_ParEsts <- lavaan::parameterEstimates(simple_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(sfit_sum)
## lavaan 0.6.16 ended normally after 21 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           230
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               197.783
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -333.947
##   Loglikelihood unrestricted model (H1)       -333.947
##                                                       
##   Akaike (AIC)                                 681.893
##   Bayesian (BIC)                               705.960
##   Sample-size adjusted Bayesian (SABIC)        683.774
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   PF_AVG ~                                                              
##     BRS_AVG   (b1)    0.431    0.088    4.907    0.000    0.264    0.610
##     SS_AVG   (c_p)    0.712    0.052   13.718    0.000    0.612    0.820
##   BRS_AVG ~                                                             
##     SS_AVG    (a1)    0.111    0.038    2.959    0.003    0.040    0.186
##    Std.lv  Std.all
##                   
##     0.431    0.224
##     0.712    0.671
##                   
##     0.111    0.202
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .PF_AVG            0.578    0.375    1.541    0.123   -0.165    1.310
##    .BRS_AVG           2.608    0.203   12.859    0.000    2.186    2.991
##    Std.lv  Std.all
##     0.578    0.669
##     2.608    5.814
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .PF_AVG            0.327    0.037    8.730    0.000    0.251    0.400
##    .BRS_AVG           0.193    0.018   10.668    0.000    0.155    0.227
##    Std.lv  Std.all
##     0.327    0.438
##     0.193    0.959
## 
## R-Square:
##                    Estimate
##     PF_AVG            0.562
##     BRS_AVG           0.041
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect          0.048    0.020    2.447    0.014    0.014    0.092
##     total_c           0.760    0.056   13.595    0.000    0.654    0.877
##     direct            0.712    0.052   13.711    0.000    0.612    0.820
##    Std.lv  Std.all
##     0.048    0.045
##     0.760    0.717
##     0.712    0.671
print(sfit_ParEsts)
##         lhs op          rhs    label   est    se      z pvalue ci.lower
## 1    PF_AVG  ~      BRS_AVG       b1 0.431 0.088  4.907  0.000    0.274
## 2    PF_AVG  ~       SS_AVG      c_p 0.712 0.052 13.718  0.000    0.608
## 3   BRS_AVG  ~       SS_AVG       a1 0.111 0.038  2.959  0.003    0.040
## 4    PF_AVG ~~       PF_AVG          0.327 0.037  8.730  0.000    0.256
## 5   BRS_AVG ~~      BRS_AVG          0.193 0.018 10.668  0.000    0.159
## 6    SS_AVG ~~       SS_AVG          0.663 0.000     NA     NA    0.663
## 7    PF_AVG ~1                       0.578 0.375  1.541  0.123   -0.185
## 8   BRS_AVG ~1                       2.608 0.203 12.859  0.000    2.215
## 9    SS_AVG ~1                       5.394 0.000     NA     NA    5.394
## 10 indirect :=        a1*b1 indirect 0.048 0.020  2.447  0.014    0.019
## 11  total_c := c_p+indirect  total_c 0.760 0.056 13.595  0.000    0.652
## 12   direct :=          c_p   direct 0.712 0.052 13.711  0.000    0.608
##    ci.upper std.lv std.all std.nox
## 1     0.618  0.431   0.224   0.224
## 2     0.818  0.712   0.671   0.825
## 3     0.187  0.111   0.202   0.248
## 4     0.407  0.327   0.438   0.438
## 5     0.233  0.193   0.959   0.959
## 6     0.663  0.663   1.000   0.663
## 7     1.306  0.578   0.669   0.669
## 8     3.004  2.608   5.814   5.814
## 9     5.394  5.394   6.627   5.394
## 10    0.096  0.048   0.045   0.056
## 11    0.874  0.760   0.717   0.880
## 12    0.818  0.712   0.671   0.825
#Parallel Mediation

parallel_med_PF <- "
    PF_AVG ~ b1*PSNQ_AVG + b2*BRS_AVG + c_p*SS_AVG
    PSNQ_AVG ~ a1*SS_AVG
    BRS_AVG ~ a2*SS_AVG

    # Define indirect effects
    indirect1 := a1 * b1
    indirect2 := a2 * b2
    contrast := indirect1 - indirect2
    total_indirects := indirect1 + indirect2
    total_c := c_p + total_indirects
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the parallel mediation model using lavaan's sem function
parallel_fit <- lavaan::sem(parallel_med_PF, data = quant_df, se = "bootstrap", 
                            missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
pfit_sum <- lavaan::summary(parallel_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
pfit_ParEsts <- lavaan::parameterEstimates(parallel_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(pfit_sum)
## lavaan 0.6.16 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
## 
##   Number of observations                           230
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 2.207
##   Degrees of freedom                                 1
##   P-value (Chi-square)                           0.137
## 
## Model Test Baseline Model:
## 
##   Test statistic                               465.725
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997
##   Tucker-Lewis Index (TLI)                       0.984
##                                                       
##   Robust Comparative Fit Index (CFI)             0.997
##   Robust Tucker-Lewis Index (TLI)                0.984
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -471.146
##   Loglikelihood unrestricted model (H1)       -470.043
##                                                       
##   Akaike (AIC)                                 964.292
##   Bayesian (BIC)                              1002.111
##   Sample-size adjusted Bayesian (SABIC)        967.248
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.072
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.206
##   P-value H_0: RMSEA <= 0.050                    0.246
##   P-value H_0: RMSEA >= 0.080                    0.604
##                                                       
##   Robust RMSEA                                   0.073
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.208
##   P-value H_0: Robust RMSEA <= 0.050             0.244
##   P-value H_0: Robust RMSEA >= 0.080             0.608
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.022
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   PF_AVG ~                                                              
##     PSNQ_AVG  (b1)    0.620    0.073    8.505    0.000    0.480    0.781
##     BRS_AVG   (b2)    0.354    0.082    4.309    0.000    0.199    0.519
##     SS_AVG   (c_p)    0.283    0.067    4.254    0.000    0.148    0.413
##   PSNQ_AVG ~                                                            
##     SS_AVG    (a1)    0.707    0.048   14.639    0.000    0.612    0.805
##   BRS_AVG ~                                                             
##     SS_AVG    (a2)    0.109    0.037    2.927    0.003    0.037    0.185
##    Std.lv  Std.all
##                   
##     0.620    0.572
##     0.354    0.185
##     0.283    0.269
##                   
##     0.707    0.727
##                   
##     0.109    0.198
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .PF_AVG           -0.349    0.342   -1.021    0.307   -1.043    0.330
##    .PSNQ_AVG          1.811    0.269    6.745    0.000    1.289    2.348
##    .BRS_AVG           2.620    0.201   13.036    0.000    2.210    3.001
##    Std.lv  Std.all
##    -0.349   -0.406
##     1.811    2.288
##     2.620    5.848
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .PF_AVG            0.215    0.027    7.958    0.000    0.160    0.261
##    .PSNQ_AVG          0.296    0.034    8.733    0.000    0.227    0.362
##    .BRS_AVG           0.193    0.018   10.679    0.000    0.155    0.226
##    Std.lv  Std.all
##     0.215    0.292
##     0.296    0.472
##     0.193    0.961
## 
## R-Square:
##                    Estimate
##     PF_AVG            0.708
##     PSNQ_AVG          0.528
##     BRS_AVG           0.039
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect1         0.438    0.060    7.260    0.000    0.333    0.576
##     indirect2         0.039    0.017    2.279    0.023    0.010    0.076
##     contrast          0.400    0.064    6.239    0.000    0.287    0.543
##     total_indircts    0.477    0.061    7.776    0.000    0.364    0.614
##     total_c           0.760    0.056   13.595    0.000    0.654    0.877
##     direct            0.283    0.067    4.252    0.000    0.148    0.413
##    Std.lv  Std.all
##     0.438    0.416
##     0.039    0.037
##     0.400    0.379
##     0.477    0.453
##     0.760    0.721
##     0.283    0.269
print(pfit_ParEsts)
##                lhs op                 rhs           label    est    se      z
## 1           PF_AVG  ~            PSNQ_AVG              b1  0.620 0.073  8.505
## 2           PF_AVG  ~             BRS_AVG              b2  0.354 0.082  4.309
## 3           PF_AVG  ~              SS_AVG             c_p  0.283 0.067  4.254
## 4         PSNQ_AVG  ~              SS_AVG              a1  0.707 0.048 14.639
## 5          BRS_AVG  ~              SS_AVG              a2  0.109 0.037  2.927
## 6           PF_AVG ~~              PF_AVG                  0.215 0.027  7.958
## 7         PSNQ_AVG ~~            PSNQ_AVG                  0.296 0.034  8.733
## 8          BRS_AVG ~~             BRS_AVG                  0.193 0.018 10.679
## 9           SS_AVG ~~              SS_AVG                  0.663 0.000     NA
## 10          PF_AVG ~1                                     -0.349 0.342 -1.021
## 11        PSNQ_AVG ~1                                      1.811 0.269  6.745
## 12         BRS_AVG ~1                                      2.620 0.201 13.036
## 13          SS_AVG ~1                                      5.394 0.000     NA
## 14       indirect1 :=               a1*b1       indirect1  0.438 0.060  7.260
## 15       indirect2 :=               a2*b2       indirect2  0.039 0.017  2.279
## 16        contrast := indirect1-indirect2        contrast  0.400 0.064  6.239
## 17 total_indirects := indirect1+indirect2 total_indirects  0.477 0.061  7.776
## 18         total_c := c_p+total_indirects         total_c  0.760 0.056 13.595
## 19          direct :=                 c_p          direct  0.283 0.067  4.252
##    pvalue ci.lower ci.upper std.lv std.all std.nox
## 1   0.000    0.469    0.772  0.620   0.572   0.572
## 2   0.000    0.210    0.534  0.354   0.185   0.185
## 3   0.000    0.162    0.430  0.283   0.269   0.330
## 4   0.000    0.605    0.798  0.707   0.727   0.893
## 5   0.003    0.037    0.185  0.109   0.198   0.244
## 6   0.000    0.167    0.274  0.215   0.292   0.292
## 7   0.000    0.242    0.381  0.296   0.472   0.472
## 8   0.000    0.159    0.233  0.193   0.961   0.961
## 9      NA    0.663    0.663  0.663   1.000   0.663
## 10  0.307   -1.043    0.328 -0.349  -0.406  -0.406
## 11  0.000    1.302    2.362  1.811   2.288   2.288
## 12  0.000    2.216    3.016  2.620   5.848   5.848
## 13     NA    5.394    5.394  5.394   6.627   5.394
## 14  0.000    0.328    0.561  0.438   0.416   0.511
## 15  0.023    0.012    0.077  0.039   0.037   0.045
## 16  0.000    0.283    0.531  0.400   0.379   0.466
## 17  0.000    0.360    0.597  0.477   0.453   0.556
## 18  0.000    0.652    0.874  0.760   0.721   0.886
## 19  0.000    0.162    0.430  0.283   0.269   0.330

CAREER SATISFACTION AS OUTCOME

#Perceived Network Quality
simple_med_PSNQ_CS <- "
    CS_AVG ~ b1*PSNQ_AVG + c_p*SS_AVG
    PSNQ_AVG ~ a1*SS_AVG

    # Define indirect and direct effects
    indirect := a1 * b1
    total_c := c_p + indirect
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the simple mediation model using lavaan's sem function
simple_fit <- lavaan::sem(simple_med_PSNQ_CS, data = quant_df, se = "bootstrap", 
                          missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
sfit_sum <- lavaan::summary(simple_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
sfit_ParEsts <- lavaan::parameterEstimates(simple_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(sfit_sum)
## lavaan 0.6.16 ended normally after 20 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           230
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               319.475
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -335.499
##   Loglikelihood unrestricted model (H1)       -335.499
##                                                       
##   Akaike (AIC)                                 684.998
##   Bayesian (BIC)                               709.065
##   Sample-size adjusted Bayesian (SABIC)        686.879
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   CS_AVG ~                                                              
##     PSNQ_AVG  (b1)    0.562    0.072    7.756    0.000    0.430    0.716
##     SS_AVG   (c_p)    0.007    0.073    0.095    0.924   -0.145    0.143
##   PSNQ_AVG ~                                                            
##     SS_AVG    (a1)    0.704    0.048   14.595    0.000    0.609    0.803
##    Std.lv  Std.all
##                   
##     0.562    0.686
##     0.007    0.009
##                   
##     0.704    0.726
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .CS_AVG            0.886    0.215    4.116    0.000    0.474    1.328
##    .PSNQ_AVG          1.829    0.268    6.821    0.000    1.296    2.369
##    Std.lv  Std.all
##     0.886    1.371
##     1.829    2.317
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .CS_AVG            0.218    0.025    8.769    0.000    0.170    0.266
##    .PSNQ_AVG          0.295    0.034    8.734    0.000    0.227    0.362
##    Std.lv  Std.all
##     0.218    0.521
##     0.295    0.473
## 
## R-Square:
##                    Estimate
##     CS_AVG            0.479
##     PSNQ_AVG          0.527
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect          0.395    0.063    6.311    0.000    0.284    0.540
##     total_c           0.402    0.049    8.133    0.000    0.299    0.491
##     direct            0.007    0.073    0.095    0.924   -0.145    0.143
##    Std.lv  Std.all
##     0.395    0.498
##     0.402    0.507
##     0.007    0.009
print(sfit_ParEsts)
##         lhs op          rhs    label   est    se      z pvalue ci.lower
## 1    CS_AVG  ~     PSNQ_AVG       b1 0.562 0.072  7.756  0.000    0.427
## 2    CS_AVG  ~       SS_AVG      c_p 0.007 0.073  0.095  0.924   -0.139
## 3  PSNQ_AVG  ~       SS_AVG       a1 0.704 0.048 14.595  0.000    0.602
## 4    CS_AVG ~~       CS_AVG          0.218 0.025  8.769  0.000    0.178
## 5  PSNQ_AVG ~~     PSNQ_AVG          0.295 0.034  8.734  0.000    0.241
## 6    SS_AVG ~~       SS_AVG          0.663 0.000     NA     NA    0.663
## 7    CS_AVG ~1                       0.886 0.215  4.116  0.000    0.472
## 8  PSNQ_AVG ~1                       1.829 0.268  6.821  0.000    1.323
## 9    SS_AVG ~1                       5.394 0.000     NA     NA    5.394
## 10 indirect :=        a1*b1 indirect 0.395 0.063  6.311  0.000    0.282
## 11  total_c := c_p+indirect  total_c 0.402 0.049  8.133  0.000    0.297
## 12   direct :=          c_p   direct 0.007 0.073  0.095  0.924   -0.139
##    ci.upper std.lv std.all std.nox
## 1     0.712  0.562   0.686   0.686
## 2     0.154  0.007   0.009   0.011
## 3     0.794  0.704   0.726   0.892
## 4     0.274  0.218   0.521   0.521
## 5     0.381  0.295   0.473   0.473
## 6     0.663  0.663   1.000   0.663
## 7     1.328  0.886   1.371   1.371
## 8     2.384  1.829   2.317   2.317
## 9     5.394  5.394   6.627   5.394
## 10    0.535  0.395   0.498   0.612
## 11    0.490  0.402   0.507   0.622
## 12    0.154  0.007   0.009   0.011
#Resilience
simple_med_BRS_CS <- "
    CS_AVG ~ b1*BRS_AVG + c_p*SS_AVG
    BRS_AVG ~ a1*SS_AVG

    # Define indirect and direct effects
    indirect := a1 * b1
    total_c := c_p + indirect
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the simple mediation model using lavaan's sem function
simple_fit <- lavaan::sem(simple_med_BRS_CS, data = quant_df, se = "bootstrap", 
                          missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
sfit_sum <- lavaan::summary(simple_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
sfit_ParEsts <- lavaan::parameterEstimates(simple_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(sfit_sum)
## lavaan 0.6.16 ended normally after 15 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           230
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                76.709
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
##                                                       
##   Robust Comparative Fit Index (CFI)             1.000
##   Robust Tucker-Lewis Index (TLI)                1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -326.993
##   Loglikelihood unrestricted model (H1)       -326.993
##                                                       
##   Akaike (AIC)                                 667.987
##   Bayesian (BIC)                               692.053
##   Sample-size adjusted Bayesian (SABIC)        669.868
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
##                                                       
##   Robust RMSEA                                   0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: Robust RMSEA <= 0.050                NA
##   P-value H_0: Robust RMSEA >= 0.080                NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   CS_AVG ~                                                              
##     BRS_AVG   (b1)    0.007    0.090    0.072    0.942   -0.189    0.168
##     SS_AVG   (c_p)    0.401    0.050    7.968    0.000    0.297    0.494
##   BRS_AVG ~                                                             
##     SS_AVG    (a1)    0.107    0.037    2.889    0.004    0.035    0.182
##    Std.lv  Std.all
##                   
##     0.007    0.005
##     0.401    0.505
##                   
##     0.107    0.195
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .CS_AVG            1.896    0.360    5.272    0.000    1.249    2.670
##    .BRS_AVG           2.631    0.200   13.140    0.000    2.215    3.014
##    Std.lv  Std.all
##     1.896    2.932
##     2.631    5.877
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .CS_AVG            0.311    0.035    8.810    0.000    0.243    0.385
##    .BRS_AVG           0.193    0.018   10.679    0.000    0.155    0.226
##    Std.lv  Std.all
##     0.311    0.744
##     0.193    0.962
## 
## R-Square:
##                    Estimate
##     CS_AVG            0.256
##     BRS_AVG           0.038
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect          0.001    0.010    0.068    0.946   -0.022    0.021
##     total_c           0.402    0.049    8.133    0.000    0.299    0.490
##     direct            0.401    0.050    7.964    0.000    0.297    0.494
##    Std.lv  Std.all
##     0.001    0.001
##     0.402    0.506
##     0.401    0.505
print(sfit_ParEsts)
##         lhs op          rhs    label   est    se      z pvalue ci.lower
## 1    CS_AVG  ~      BRS_AVG       b1 0.007 0.090  0.072  0.942   -0.181
## 2    CS_AVG  ~       SS_AVG      c_p 0.401 0.050  7.968  0.000    0.294
## 3   BRS_AVG  ~       SS_AVG       a1 0.107 0.037  2.889  0.004    0.035
## 4    CS_AVG ~~       CS_AVG          0.311 0.035  8.810  0.000    0.252
## 5   BRS_AVG ~~      BRS_AVG          0.193 0.018 10.679  0.000    0.159
## 6    SS_AVG ~~       SS_AVG          0.663 0.000     NA     NA    0.663
## 7    CS_AVG ~1                       1.896 0.360  5.272  0.000    1.245
## 8   BRS_AVG ~1                       2.631 0.200 13.140  0.000    2.226
## 9    SS_AVG ~1                       5.394 0.000     NA     NA    5.394
## 10 indirect :=        a1*b1 indirect 0.001 0.010  0.068  0.946   -0.021
## 11  total_c := c_p+indirect  total_c 0.402 0.049  8.133  0.000    0.297
## 12   direct :=          c_p   direct 0.401 0.050  7.964  0.000    0.294
##    ci.upper std.lv std.all std.nox
## 1     0.173  0.007   0.005   0.005
## 2     0.493  0.401   0.505   0.621
## 3     0.182  0.107   0.195   0.240
## 4     0.394  0.311   0.744   0.744
## 5     0.233  0.193   0.962   0.962
## 6     0.663  0.663   1.000   0.663
## 7     2.654  1.896   2.932   2.932
## 8     3.021  2.631   5.877   5.877
## 9     5.394  5.394   6.627   5.394
## 10    0.021  0.001   0.001   0.001
## 11    0.490  0.402   0.506   0.622
## 12    0.493  0.401   0.505   0.621
#Parallel Mediation

parallel_med_CS <- "
    CS_AVG ~ b1*PSNQ_AVG + b2*BRS_AVG + c_p*SS_AVG
    PSNQ_AVG ~ a1*SS_AVG
    BRS_AVG ~ a2*SS_AVG

    # Define indirect effects
    indirect1 := a1 * b1
    indirect2 := a2 * b2
    contrast := indirect1 - indirect2
    total_indirects := indirect1 + indirect2
    total_c := c_p + total_indirects
    direct := c_p
"

# Set seed for reproducibility
set.seed(11051999)

# Run the parallel mediation model using lavaan's sem function
parallel_fit <- lavaan::sem(parallel_med_CS, data = quant_df, se = "bootstrap", 
                            missing = "fiml", bootstrap = 1000)

# Summarize the fit of the model with standardized estimates, R-squared, and confidence intervals
pfit_sum <- lavaan::summary(parallel_fit, standardized = TRUE, rsq = TRUE, 
                            fit = TRUE, ci = TRUE)

# Extract parameter estimates with bootstrapped confidence intervals
pfit_ParEsts <- lavaan::parameterEstimates(parallel_fit, boot.ci.type = "bca.simple", 
                                           standardized = TRUE)

# Print the summary and parameter estimates
print(pfit_sum)
## lavaan 0.6.16 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
## 
##   Number of observations                           230
##   Number of missing patterns                         4
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 2.058
##   Degrees of freedom                                 1
##   P-value (Chi-square)                           0.151
## 
## Model Test Baseline Model:
## 
##   Test statistic                               330.868
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997
##   Tucker-Lewis Index (TLI)                       0.980
##                                                       
##   Robust Comparative Fit Index (CFI)             0.997
##   Robust Tucker-Lewis Index (TLI)                0.980
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -471.010
##   Loglikelihood unrestricted model (H1)       -469.981
##                                                       
##   Akaike (AIC)                                 964.020
##   Bayesian (BIC)                              1001.839
##   Sample-size adjusted Bayesian (SABIC)        966.976
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.068
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.203
##   P-value H_0: RMSEA <= 0.050                    0.264
##   P-value H_0: RMSEA >= 0.080                    0.583
##                                                       
##   Robust RMSEA                                   0.069
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.205
##   P-value H_0: Robust RMSEA <= 0.050             0.261
##   P-value H_0: Robust RMSEA >= 0.080             0.588
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.022
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   CS_AVG ~                                                              
##     PSNQ_AVG  (b1)    0.566    0.074    7.677    0.000    0.434    0.723
##     BRS_AVG   (b2)   -0.059    0.082   -0.722    0.470   -0.223    0.089
##     SS_AVG   (c_p)    0.010    0.073    0.139    0.890   -0.144    0.146
##   PSNQ_AVG ~                                                            
##     SS_AVG    (a1)    0.704    0.048   14.596    0.000    0.609    0.803
##   BRS_AVG ~                                                             
##     SS_AVG    (a2)    0.107    0.037    2.885    0.004    0.035    0.181
##    Std.lv  Std.all
##                   
##     0.566    0.690
##    -0.059   -0.041
##     0.010    0.013
##                   
##     0.704    0.726
##                   
##     0.107    0.195
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .CS_AVG            1.034    0.300    3.445    0.001    0.453    1.674
##    .PSNQ_AVG          1.829    0.268    6.821    0.000    1.296    2.367
##    .BRS_AVG           2.632    0.200   13.147    0.000    2.219    3.011
##    Std.lv  Std.all
##     1.034    1.597
##     1.829    2.317
##     2.632    5.880
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .CS_AVG            0.217    0.024    8.958    0.000    0.169    0.262
##    .PSNQ_AVG          0.295    0.034    8.734    0.000    0.227    0.362
##    .BRS_AVG           0.193    0.018   10.679    0.000    0.155    0.226
##    Std.lv  Std.all
##     0.217    0.517
##     0.295    0.473
##     0.193    0.962
## 
## R-Square:
##                    Estimate
##     CS_AVG            0.483
##     PSNQ_AVG          0.527
##     BRS_AVG           0.038
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect1         0.398    0.064    6.256    0.000    0.289    0.548
##     indirect2        -0.006    0.009   -0.673    0.501   -0.029    0.010
##     contrast          0.405    0.066    6.139    0.000    0.292    0.556
##     total_indircts    0.392    0.063    6.243    0.000    0.280    0.536
##     total_c           0.402    0.049    8.133    0.000    0.299    0.491
##     direct            0.010    0.073    0.138    0.890   -0.144    0.146
##    Std.lv  Std.all
##     0.398    0.501
##    -0.006   -0.008
##     0.405    0.509
##     0.392    0.493
##     0.402    0.506
##     0.010    0.013
print(pfit_ParEsts)
##                lhs op                 rhs           label    est    se      z
## 1           CS_AVG  ~            PSNQ_AVG              b1  0.566 0.074  7.677
## 2           CS_AVG  ~             BRS_AVG              b2 -0.059 0.082 -0.722
## 3           CS_AVG  ~              SS_AVG             c_p  0.010 0.073  0.139
## 4         PSNQ_AVG  ~              SS_AVG              a1  0.704 0.048 14.596
## 5          BRS_AVG  ~              SS_AVG              a2  0.107 0.037  2.885
## 6           CS_AVG ~~              CS_AVG                  0.217 0.024  8.958
## 7         PSNQ_AVG ~~            PSNQ_AVG                  0.295 0.034  8.734
## 8          BRS_AVG ~~             BRS_AVG                  0.193 0.018 10.679
## 9           SS_AVG ~~              SS_AVG                  0.663 0.000     NA
## 10          CS_AVG ~1                                      1.034 0.300  3.445
## 11        PSNQ_AVG ~1                                      1.829 0.268  6.821
## 12         BRS_AVG ~1                                      2.632 0.200 13.147
## 13          SS_AVG ~1                                      5.394 0.000     NA
## 14       indirect1 :=               a1*b1       indirect1  0.398 0.064  6.256
## 15       indirect2 :=               a2*b2       indirect2 -0.006 0.009 -0.673
## 16        contrast := indirect1-indirect2        contrast  0.405 0.066  6.139
## 17 total_indirects := indirect1+indirect2 total_indirects  0.392 0.063  6.243
## 18         total_c := c_p+total_indirects         total_c  0.402 0.049  8.133
## 19          direct :=                 c_p          direct  0.010 0.073  0.138
##    pvalue ci.lower ci.upper std.lv std.all std.nox
## 1   0.000    0.433    0.719  0.566   0.690   0.690
## 2   0.470   -0.223    0.091 -0.059  -0.041  -0.041
## 3   0.890   -0.132    0.160  0.010   0.013   0.016
## 4   0.000    0.602    0.794  0.704   0.726   0.892
## 5   0.004    0.035    0.181  0.107   0.195   0.240
## 6   0.000    0.178    0.273  0.217   0.517   0.517
## 7   0.000    0.241    0.381  0.295   0.473   0.473
## 8   0.000    0.159    0.233  0.193   0.962   0.962
## 9      NA    0.663    0.663  0.663   1.000   0.663
## 10  0.001    0.448    1.662  1.034   1.597   1.597
## 11  0.000    1.323    2.383  1.829   2.317   2.317
## 12  0.000    2.224    3.016  2.632   5.880   5.880
## 13     NA    5.394    5.394  5.394   6.627   5.394
## 14  0.000    0.283    0.537  0.398   0.501   0.615
## 15  0.501   -0.031    0.009 -0.006  -0.008  -0.010
## 16  0.000    0.289    0.551  0.405   0.509   0.625
## 17  0.000    0.277    0.530  0.392   0.493   0.606
## 18  0.000    0.297    0.490  0.402   0.506   0.621
## 19  0.890   -0.132    0.160  0.010   0.013   0.016