dünya bankasından veri indirmek

library(WDI)

SE.PRM.UNER.FE “Okula gitmeyen çocuklar, ilkokul, kadın” SL.TLF.TOTL.IN ” işgücü toplamı”

data <-  WDI(indicator= c("SE.PRM.UNER.FE","SL.TLF.TOTL.IN"))

kesit veri

2000

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data2000 <- data %>% filter(year==2000)

Zaman serisi

dataTC <- data %>% filter(country=="Chad")
library(ggplot2)

`

ggplot(dataTC,aes(year,SE.PRM.UNER.FE)) +geom_line()
## Warning: Removed 15 rows containing missing values or values outside the scale range
## (`geom_line()`).

ggplot(dataTC,aes(year,SL.TLF.TOTL.IN)) +geom_line()
## Warning: Removed 31 rows containing missing values or values outside the scale range
## (`geom_line()`).

REGRESYON

model <- lm(SE.PRM.UNER.FE ~ SL.TLF.TOTL.IN, data = dataTC)
summary(model)
## 
## Call:
## lm(formula = SE.PRM.UNER.FE ~ SL.TLF.TOTL.IN, data = dataTC)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -101301   -6820    9336   14583   81116 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3.315e+05  4.261e+04    7.78 1.21e-06 ***
## SL.TLF.TOTL.IN 2.827e-02  1.013e-02    2.79   0.0137 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 43780 on 15 degrees of freedom
##   (47 observations effacées parce que manquantes)
## Multiple R-squared:  0.3417, Adjusted R-squared:  0.2978 
## F-statistic: 7.786 on 1 and 15 DF,  p-value: 0.01373