Library / Packages

library("forecast")
## Warning: package 'forecast' was built under R version 4.3.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library("graphics")
library("TTR")
## Warning: package 'TTR' was built under R version 4.3.3
library("TSA")
## Warning: package 'TSA' was built under R version 4.3.3
## Registered S3 methods overwritten by 'TSA':
##   method       from    
##   fitted.Arima forecast
##   plot.Arima   forecast
## 
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
## 
##     acf, arima
## The following object is masked from 'package:utils':
## 
##     tar
library("readxl")
## Warning: package 'readxl' was built under R version 4.3.2

Data

url <- "https://raw.githubusercontent.com/raihanadisecha/getfile/main/Merged%20Data.xlsx"
destfile <- "local_filename.xlsx"
download.file(url, destfile, mode = "wb")
data <- read_excel(destfile)
file.remove(destfile)
## [1] TRUE
data
## # A tibble: 500 × 2
##    date                temperature
##    <dttm>                    <dbl>
##  1 2022-08-20 12:00:00        29.5
##  2 2022-08-21 12:00:00        29.7
##  3 2022-08-22 12:00:00        30.0
##  4 2022-08-23 12:00:00        30.2
##  5 2022-08-24 12:00:00        30.0
##  6 2022-08-25 12:00:00        29.5
##  7 2022-08-26 12:00:00        29.4
##  8 2022-08-27 12:00:00        29.1
##  9 2022-08-28 12:00:00        29.0
## 10 2022-08-29 12:00:00        28.0
## # ℹ 490 more rows
data.ts <- ts(data$temperature)
ts.plot(data.ts, xlab="Time Period ", ylab="Temperature", 
        main = "Time Series Plot")
points(data.ts)

Single Moving Average & Double Moving Average

Pembagian Data

Pembagian data latih dan data uji dilakukan dengan perbandingan 63% data latih dan 37% data uji.

#membagi data latih dan data uji
training_ma <- data[1:315,]
testing_ma <- data[316:500,]
train_ma.ts <- ts(training_ma$temperature)
test_ma.ts <- ts(testing_ma$temperature)

Eksplorasi Data

Eksplorasi data dilakukan pada keseluruhan data, data latih serta data uji menggunakan plot data deret waktu.

#eksplorasi keseluruhan data
plot(data.ts, col="red",main="Plot semua data")
points(data.ts)

#eksplorasi data latih
plot(train_ma.ts, col="blue",main="Plot data latih")
points(train_ma.ts)

#eksplorasi data uji
plot(test_ma.ts, col="blue",main="Plot data uji")
points(test_ma.ts)

Eksplorasi data juga dapat dilakukan menggunakan package ggplot2 dengan terlebih dahulu memanggil library package ggplot2.

#Eksplorasi dengan GGPLOT
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.2
ggplot() + 
  geom_line(data = training_ma, aes(x = date, y = temperature, col = "Data Latih")) +
  geom_line(data = testing_ma, aes(x = date, y = temperature, col = "Data Uji")) +
  labs(x = "Periode Waktu", y = "Temperature", color = "Legend") +
  scale_colour_manual(name="Keterangan:", breaks = c("Data Latih", "Data Uji"),
                      values = c("blue", "red")) + 
  theme_bw() + theme(legend.position = "bottom",
                     plot.caption = element_text(hjust=0.5, size=12))

Single Moving Average (SMA)

Ide dasar dari Single Moving Average (SMA) adalah data suatu periode dipengaruhi oleh data periode sebelumnya. Metode pemulusan ini cocok digunakan untuk pola data stasioner atau konstan. Prinsip dasar metode pemulusan ini adalah data pemulusan pada periode ke-t merupakan rata rata dari m buah data pada periode ke-t hingga periode ke (t-m+1). Data pemulusan pada periode ke-t selanjutnya digunakan sebagai nilai peramalan pada periode ke t+1

Pemulusan menggunakan metode SMA dilakukan dengan fungsi SMA(). Dalam hal ini akan dilakukan pemulusan dengan parameter m=4.

data.sma<-SMA(train_ma.ts, n=4)
data.sma
## Time Series:
## Start = 1 
## End = 315 
## Frequency = 1 
##   [1]       NA       NA       NA 29.85448 29.97195 29.92870 29.79212 29.53335
##   [9] 29.28100 28.88482 28.59395 28.45320 28.30070 28.34230 28.38050 28.35225
##  [17] 28.46187 28.45560 28.48435 28.32397 28.07392 27.97292 27.85032 28.01642
##  [25] 28.28472 28.58972 28.81157 28.90912 28.85895 28.81937 28.80137 28.87067
##  [33] 28.98937 29.01857 28.98287 28.93135 28.87432 28.86937 28.91400 28.92090
##  [41] 28.88212 28.79592 28.65220 28.52350 28.50042 28.54322 28.61227 28.42257
##  [49] 28.14632 27.94220 27.78157 27.83497 27.88770 27.89070 27.90520 27.85405
##  [57] 27.74642 27.65742 27.77600 27.89452 28.16575 28.37985 28.28102 28.30362
##  [65] 28.34827 28.36640 28.38997 28.38460 28.35257 28.37762 28.48997 28.58927
##  [73] 28.66365 28.77867 28.87877 28.90627 28.86515 28.78992 28.68020 28.63257
##  [81] 28.60357 28.59865 28.66687 28.79442 29.00152 29.16710 29.28645 29.40217
##  [89] 29.41365 29.37840 29.32985 29.24050 29.16777 29.12815 29.10685 29.07545
##  [97] 28.97647 29.00732 28.99517 29.00290 29.10362 29.08872 29.10472 29.12167
## [105] 29.10890 29.05072 29.00157 28.90125 28.85790 28.74725 28.65207 28.55205
## [113] 28.49235 28.54427 28.62370 28.77315 28.83998 28.96525 29.02660 29.19613
## [121] 29.39500 29.55140 29.65363 29.63775 29.48793 29.28292 29.19900 29.05925
## [129] 29.02135 29.02303 28.94035 28.85250 28.73115 28.60700 28.51540 28.45437
## [137] 28.39102 28.33062 28.27045 28.23707 28.26000 28.29612 28.37092 28.43442
## [145] 28.53545 28.65590 28.75712 28.83952 28.84687 28.78577 28.72115 28.64582
## [153] 28.59630 28.53185 28.45135 28.40770 28.37867 28.39278 28.39588 28.36280
## [161] 28.30508 28.20550 28.07215 28.04715 27.98627 27.93217 27.92785 27.89632
## [169] 27.97942 28.14520 28.26567 28.38957 28.36322 28.33800 28.27375 28.00882
## [177] 27.92495 27.91520 27.95552 28.15025 28.26972 28.28950 28.39615 28.57550
## [185] 28.71790 28.82930 28.85245 28.69127 28.50322 28.32775 28.17730 28.15148
## [193] 28.16515 28.18938 28.15453 28.14670 28.13355 28.14335 28.30265 28.45000
## [201] 28.53592 28.57377 28.66005 28.63465 28.73318 28.90887 28.86910 28.84860
## [209] 28.78967 28.66595 28.71677 28.88517 29.09935 29.30247 29.50100 29.67927
## [217] 29.79982 29.83210 29.78630 29.71742 29.63302 29.53180 29.42285 29.24725
## [225] 29.12883 29.11855 29.11587 29.15230 29.22520 29.31227 29.41695 29.55952
## [233] 29.57327 29.53842 29.48327 29.38857 29.35042 29.32835 29.30140 29.28317
## [241] 29.28107 29.37357 29.46287 29.50075 29.50460 29.40487 29.34095 29.39390
## [249] 29.44347 29.58502 29.65152 29.69880 29.79202 29.83012 29.93372 29.97085
## [257] 29.94697 29.93635 30.02330 30.17972 30.33577 30.49785 30.54250 30.51850
## [265] 30.58427 30.51050 30.33875 30.15987 29.90177 29.72952 29.56797 29.35107
## [273] 29.22452 29.14142 29.16680 29.27522 29.30422 29.32097 29.28565 29.27012
## [281] 29.28187 29.29462 29.34477 29.36812 29.37302 29.39897 29.41412 29.45692
## [289] 29.51430 29.54860 29.58232 29.53655 29.50260 29.55280 29.58582 29.65565
## [297] 29.65660 29.53322 29.36525 29.13792 28.85530 28.65337 28.47762 28.25427
## [305] 28.25405 28.33835 28.39060 28.45602 28.44825 28.32885 28.30452 28.39205
## [313] 28.37187 28.25687 28.11662

Data pemulusan pada periode ke-t selanjutnya digunakan sebagai nilai peramalan pada periode ke t+1 sehingga hasil peramalan 1 periode kedepan adalah sebagai berikut.

data.ramal<-c(NA,data.sma)
data.ramal #forecast 1 periode ke depan
##   [1]       NA       NA       NA       NA 29.85448 29.97195 29.92870 29.79212
##   [9] 29.53335 29.28100 28.88482 28.59395 28.45320 28.30070 28.34230 28.38050
##  [17] 28.35225 28.46187 28.45560 28.48435 28.32397 28.07392 27.97292 27.85032
##  [25] 28.01642 28.28472 28.58972 28.81157 28.90912 28.85895 28.81937 28.80137
##  [33] 28.87067 28.98937 29.01857 28.98287 28.93135 28.87432 28.86937 28.91400
##  [41] 28.92090 28.88212 28.79592 28.65220 28.52350 28.50042 28.54322 28.61227
##  [49] 28.42257 28.14632 27.94220 27.78157 27.83497 27.88770 27.89070 27.90520
##  [57] 27.85405 27.74642 27.65742 27.77600 27.89452 28.16575 28.37985 28.28102
##  [65] 28.30362 28.34827 28.36640 28.38997 28.38460 28.35257 28.37762 28.48997
##  [73] 28.58927 28.66365 28.77867 28.87877 28.90627 28.86515 28.78992 28.68020
##  [81] 28.63257 28.60357 28.59865 28.66687 28.79442 29.00152 29.16710 29.28645
##  [89] 29.40217 29.41365 29.37840 29.32985 29.24050 29.16777 29.12815 29.10685
##  [97] 29.07545 28.97647 29.00732 28.99517 29.00290 29.10362 29.08872 29.10472
## [105] 29.12167 29.10890 29.05072 29.00157 28.90125 28.85790 28.74725 28.65207
## [113] 28.55205 28.49235 28.54427 28.62370 28.77315 28.83998 28.96525 29.02660
## [121] 29.19613 29.39500 29.55140 29.65363 29.63775 29.48793 29.28292 29.19900
## [129] 29.05925 29.02135 29.02303 28.94035 28.85250 28.73115 28.60700 28.51540
## [137] 28.45437 28.39102 28.33062 28.27045 28.23707 28.26000 28.29612 28.37092
## [145] 28.43442 28.53545 28.65590 28.75712 28.83952 28.84687 28.78577 28.72115
## [153] 28.64582 28.59630 28.53185 28.45135 28.40770 28.37867 28.39278 28.39588
## [161] 28.36280 28.30508 28.20550 28.07215 28.04715 27.98627 27.93217 27.92785
## [169] 27.89632 27.97942 28.14520 28.26567 28.38957 28.36322 28.33800 28.27375
## [177] 28.00882 27.92495 27.91520 27.95552 28.15025 28.26972 28.28950 28.39615
## [185] 28.57550 28.71790 28.82930 28.85245 28.69127 28.50322 28.32775 28.17730
## [193] 28.15148 28.16515 28.18938 28.15453 28.14670 28.13355 28.14335 28.30265
## [201] 28.45000 28.53592 28.57377 28.66005 28.63465 28.73318 28.90887 28.86910
## [209] 28.84860 28.78967 28.66595 28.71677 28.88517 29.09935 29.30247 29.50100
## [217] 29.67927 29.79982 29.83210 29.78630 29.71742 29.63302 29.53180 29.42285
## [225] 29.24725 29.12883 29.11855 29.11587 29.15230 29.22520 29.31227 29.41695
## [233] 29.55952 29.57327 29.53842 29.48327 29.38857 29.35042 29.32835 29.30140
## [241] 29.28317 29.28107 29.37357 29.46287 29.50075 29.50460 29.40487 29.34095
## [249] 29.39390 29.44347 29.58502 29.65152 29.69880 29.79202 29.83012 29.93372
## [257] 29.97085 29.94697 29.93635 30.02330 30.17972 30.33577 30.49785 30.54250
## [265] 30.51850 30.58427 30.51050 30.33875 30.15987 29.90177 29.72952 29.56797
## [273] 29.35107 29.22452 29.14142 29.16680 29.27522 29.30422 29.32097 29.28565
## [281] 29.27012 29.28187 29.29462 29.34477 29.36812 29.37302 29.39897 29.41412
## [289] 29.45692 29.51430 29.54860 29.58232 29.53655 29.50260 29.55280 29.58582
## [297] 29.65565 29.65660 29.53322 29.36525 29.13792 28.85530 28.65337 28.47762
## [305] 28.25427 28.25405 28.33835 28.39060 28.45602 28.44825 28.32885 28.30452
## [313] 28.39205 28.37187 28.25687 28.11662

Selanjutnya akan dilakukan peramalan sejumlah data uji yaitu 185 periode. Pada metode SMA, hasil peramalan 185 periode ke depan akan bernilai sama dengan hasil peramalan 1 periode kedepan. Dalam hal ini akan dilakukan pengguabungan data aktual train, data hasil pemulusan dan data hasil ramalan 185 periode kedepan.

data.gab<-cbind(aktual=c(train_ma.ts,rep(NA,185)),pemulusan=c(data.sma,rep(NA,185)),ramalan=c(data.ramal,rep(data.ramal[length(data.ramal)],184)))
data.gab #forecast 185 periode ke depan
##         aktual pemulusan  ramalan
##   [1,] 29.5199        NA       NA
##   [2,] 29.7223        NA       NA
##   [3,] 29.9959        NA       NA
##   [4,] 30.1798  29.85448       NA
##   [5,] 29.9898  29.97195 29.85448
##   [6,] 29.5493  29.92870 29.97195
##   [7,] 29.4496  29.79212 29.92870
##   [8,] 29.1447  29.53335 29.79212
##   [9,] 28.9804  29.28100 29.53335
##  [10,] 27.9646  28.88482 29.28100
##  [11,] 28.2861  28.59395 28.88482
##  [12,] 28.5817  28.45320 28.59395
##  [13,] 28.3704  28.30070 28.45320
##  [14,] 28.1310  28.34230 28.30070
##  [15,] 28.4389  28.38050 28.34230
##  [16,] 28.4687  28.35225 28.38050
##  [17,] 28.8089  28.46187 28.35225
##  [18,] 28.1059  28.45560 28.46187
##  [19,] 28.5539  28.48435 28.45560
##  [20,] 27.8272  28.32397 28.48435
##  [21,] 27.8087  28.07392 28.32397
##  [22,] 27.7019  27.97292 28.07392
##  [23,] 28.0635  27.85032 27.97292
##  [24,] 28.4916  28.01642 27.85032
##  [25,] 28.8819  28.28472 28.01642
##  [26,] 28.9219  28.58972 28.28472
##  [27,] 28.9509  28.81157 28.58972
##  [28,] 28.8818  28.90912 28.81157
##  [29,] 28.6812  28.85895 28.90912
##  [30,] 28.7636  28.81937 28.85895
##  [31,] 28.8789  28.80137 28.81937
##  [32,] 29.1590  28.87067 28.80137
##  [33,] 29.1560  28.98937 28.87067
##  [34,] 28.8804  29.01857 28.98937
##  [35,] 28.7361  28.98287 29.01857
##  [36,] 28.9529  28.93135 28.98287
##  [37,] 28.9279  28.87432 28.93135
##  [38,] 28.8606  28.86937 28.87432
##  [39,] 28.9146  28.91400 28.86937
##  [40,] 28.9805  28.92090 28.91400
##  [41,] 28.7728  28.88212 28.92090
##  [42,] 28.5158  28.79592 28.88212
##  [43,] 28.3397  28.65220 28.79592
##  [44,] 28.4657  28.52350 28.65220
##  [45,] 28.6805  28.50042 28.52350
##  [46,] 28.6870  28.54322 28.50042
##  [47,] 28.6159  28.61227 28.54322
##  [48,] 27.7069  28.42257 28.61227
##  [49,] 27.5755  28.14632 28.42257
##  [50,] 27.8705  27.94220 28.14632
##  [51,] 27.9734  27.78157 27.94220
##  [52,] 27.9205  27.83497 27.78157
##  [53,] 27.7864  27.88770 27.83497
##  [54,] 27.8825  27.89070 27.88770
##  [55,] 28.0314  27.90520 27.89070
##  [56,] 27.7159  27.85405 27.90520
##  [57,] 27.3559  27.74642 27.85405
##  [58,] 27.5265  27.65742 27.74642
##  [59,] 28.5057  27.77600 27.65742
##  [60,] 28.1900  27.89452 27.77600
##  [61,] 28.4408  28.16575 27.89452
##  [62,] 28.3829  28.37985 28.16575
##  [63,] 28.1104  28.28102 28.37985
##  [64,] 28.2804  28.30362 28.28102
##  [65,] 28.6194  28.34827 28.30362
##  [66,] 28.4554  28.36640 28.34827
##  [67,] 28.2047  28.38997 28.36640
##  [68,] 28.2589  28.38460 28.38997
##  [69,] 28.4913  28.35257 28.38460
##  [70,] 28.5556  28.37762 28.35257
##  [71,] 28.6541  28.48997 28.37762
##  [72,] 28.6561  28.58927 28.48997
##  [73,] 28.7888  28.66365 28.58927
##  [74,] 29.0157  28.77867 28.66365
##  [75,] 29.0545  28.87877 28.77867
##  [76,] 28.7661  28.90627 28.87877
##  [77,] 28.6243  28.86515 28.90627
##  [78,] 28.7148  28.78992 28.86515
##  [79,] 28.6156  28.68020 28.78992
##  [80,] 28.5756  28.63257 28.68020
##  [81,] 28.5083  28.60357 28.63257
##  [82,] 28.6951  28.59865 28.60357
##  [83,] 28.8885  28.66687 28.59865
##  [84,] 29.0858  28.79442 28.66687
##  [85,] 29.3367  29.00152 28.79442
##  [86,] 29.3574  29.16710 29.00152
##  [87,] 29.3659  29.28645 29.16710
##  [88,] 29.5487  29.40217 29.28645
##  [89,] 29.3826  29.41365 29.40217
##  [90,] 29.2164  29.37840 29.41365
##  [91,] 29.1717  29.32985 29.37840
##  [92,] 29.1913  29.24050 29.32985
##  [93,] 29.0917  29.16777 29.24050
##  [94,] 29.0579  29.12815 29.16777
##  [95,] 29.0865  29.10685 29.12815
##  [96,] 29.0657  29.07545 29.10685
##  [97,] 28.6958  28.97647 29.07545
##  [98,] 29.1813  29.00732 28.97647
##  [99,] 29.0379  28.99517 29.00732
## [100,] 29.0966  29.00290 28.99517
## [101,] 29.0987  29.10362 29.00290
## [102,] 29.1217  29.08872 29.10362
## [103,] 29.1019  29.10472 29.08872
## [104,] 29.1644  29.12167 29.10472
## [105,] 29.0476  29.10890 29.12167
## [106,] 28.8890  29.05072 29.10890
## [107,] 28.9053  29.00157 29.05072
## [108,] 28.7631  28.90125 29.00157
## [109,] 28.8742  28.85790 28.90125
## [110,] 28.4464  28.74725 28.85790
## [111,] 28.5246  28.65207 28.74725
## [112,] 28.3630  28.55205 28.65207
## [113,] 28.6354  28.49235 28.55205
## [114,] 28.6541  28.54427 28.49235
## [115,] 28.8423  28.62370 28.54427
## [116,] 28.9608  28.77315 28.62370
## [117,] 28.9027  28.83998 28.77315
## [118,] 29.1552  28.96525 28.83998
## [119,] 29.0877  29.02660 28.96525
## [120,] 29.6389  29.19613 29.02660
## [121,] 29.6982  29.39500 29.19613
## [122,] 29.7808  29.55140 29.39500
## [123,] 29.4966  29.65363 29.55140
## [124,] 29.5754  29.63775 29.65363
## [125,] 29.0989  29.48793 29.63775
## [126,] 28.9608  29.28292 29.48793
## [127,] 29.1609  29.19900 29.28292
## [128,] 29.0164  29.05925 29.19900
## [129,] 28.9473  29.02135 29.05925
## [130,] 28.9675  29.02303 29.02135
## [131,] 28.8302  28.94035 29.02303
## [132,] 28.6650  28.85250 28.94035
## [133,] 28.4619  28.73115 28.85250
## [134,] 28.4709  28.60700 28.73115
## [135,] 28.4638  28.51540 28.60700
## [136,] 28.4209  28.45437 28.51540
## [137,] 28.2085  28.39102 28.45437
## [138,] 28.2293  28.33062 28.39102
## [139,] 28.2231  28.27045 28.33062
## [140,] 28.2874  28.23707 28.27045
## [141,] 28.3002  28.26000 28.23707
## [142,] 28.3738  28.29612 28.26000
## [143,] 28.5223  28.37092 28.29612
## [144,] 28.5414  28.43442 28.37092
## [145,] 28.7043  28.53545 28.43442
## [146,] 28.8556  28.65590 28.53545
## [147,] 28.9272  28.75712 28.65590
## [148,] 28.8710  28.83952 28.75712
## [149,] 28.7337  28.84687 28.83952
## [150,] 28.6112  28.78577 28.84687
## [151,] 28.6687  28.72115 28.78577
## [152,] 28.5697  28.64582 28.72115
## [153,] 28.5356  28.59630 28.64582
## [154,] 28.3534  28.53185 28.59630
## [155,] 28.3467  28.45135 28.53185
## [156,] 28.3951  28.40770 28.45135
## [157,] 28.4195  28.37867 28.40770
## [158,] 28.4098  28.39278 28.37867
## [159,] 28.3591  28.39588 28.39278
## [160,] 28.2628  28.36280 28.39588
## [161,] 28.1886  28.30508 28.36280
## [162,] 28.0115  28.20550 28.30508
## [163,] 27.8257  28.07215 28.20550
## [164,] 28.1628  28.04715 28.07215
## [165,] 27.9451  27.98627 28.04715
## [166,] 27.7951  27.93217 27.98627
## [167,] 27.8084  27.92785 27.93217
## [168,] 28.0367  27.89632 27.92785
## [169,] 28.2775  27.97942 27.89632
## [170,] 28.4582  28.14520 27.97942
## [171,] 28.2903  28.26567 28.14520
## [172,] 28.5323  28.38957 28.26567
## [173,] 28.1721  28.36322 28.38957
## [174,] 28.3573  28.33800 28.36322
## [175,] 28.0333  28.27375 28.33800
## [176,] 27.4726  28.00882 28.27375
## [177,] 27.8366  27.92495 28.00882
## [178,] 28.3183  27.91520 27.92495
## [179,] 28.1946  27.95552 27.91520
## [180,] 28.2515  28.15025 27.95552
## [181,] 28.3145  28.26972 28.15025
## [182,] 28.3974  28.28950 28.26972
## [183,] 28.6212  28.39615 28.28950
## [184,] 28.9689  28.57550 28.39615
## [185,] 28.8841  28.71790 28.57550
## [186,] 28.8430  28.82930 28.71790
## [187,] 28.7138  28.85245 28.82930
## [188,] 28.3242  28.69127 28.85245
## [189,] 28.1319  28.50322 28.69127
## [190,] 28.1411  28.32775 28.50322
## [191,] 28.1120  28.17730 28.32775
## [192,] 28.2209  28.15148 28.17730
## [193,] 28.1866  28.16515 28.15148
## [194,] 28.2380  28.18938 28.16515
## [195,] 27.9726  28.15453 28.18938
## [196,] 28.1896  28.14670 28.15453
## [197,] 28.1340  28.13355 28.14670
## [198,] 28.2772  28.14335 28.13355
## [199,] 28.6098  28.30265 28.14335
## [200,] 28.7790  28.45000 28.30265
## [201,] 28.4777  28.53592 28.45000
## [202,] 28.4286  28.57377 28.53592
## [203,] 28.9549  28.66005 28.57377
## [204,] 28.6774  28.63465 28.66005
## [205,] 28.8718  28.73318 28.63465
## [206,] 29.1314  28.90887 28.73318
## [207,] 28.7958  28.86910 28.90887
## [208,] 28.5954  28.84860 28.86910
## [209,] 28.6361  28.78967 28.84860
## [210,] 28.6365  28.66595 28.78967
## [211,] 28.9991  28.71677 28.66595
## [212,] 29.2690  28.88517 28.71677
## [213,] 29.4928  29.09935 28.88517
## [214,] 29.4490  29.30247 29.09935
## [215,] 29.7932  29.50100 29.30247
## [216,] 29.9821  29.67927 29.50100
## [217,] 29.9750  29.79982 29.67927
## [218,] 29.5781  29.83210 29.79982
## [219,] 29.6100  29.78630 29.83210
## [220,] 29.7066  29.71742 29.78630
## [221,] 29.6374  29.63302 29.71742
## [222,] 29.1732  29.53180 29.63302
## [223,] 29.1742  29.42285 29.53180
## [224,] 29.0042  29.24725 29.42285
## [225,] 29.1637  29.12883 29.24725
## [226,] 29.1321  29.11855 29.12883
## [227,] 29.1635  29.11587 29.11855
## [228,] 29.1499  29.15230 29.11587
## [229,] 29.4553  29.22520 29.15230
## [230,] 29.4804  29.31227 29.22520
## [231,] 29.5822  29.41695 29.31227
## [232,] 29.7202  29.55952 29.41695
## [233,] 29.5103  29.57327 29.55952
## [234,] 29.3410  29.53842 29.57327
## [235,] 29.3616  29.48327 29.53842
## [236,] 29.3414  29.38857 29.48327
## [237,] 29.3577  29.35042 29.38857
## [238,] 29.2527  29.32835 29.35042
## [239,] 29.2538  29.30140 29.32835
## [240,] 29.2685  29.28317 29.30140
## [241,] 29.3493  29.28107 29.28317
## [242,] 29.6227  29.37357 29.28107
## [243,] 29.6110  29.46287 29.37357
## [244,] 29.4200  29.50075 29.46287
## [245,] 29.3647  29.50460 29.50075
## [246,] 29.2238  29.40487 29.50460
## [247,] 29.3553  29.34095 29.40487
## [248,] 29.6318  29.39390 29.34095
## [249,] 29.5630  29.44347 29.39390
## [250,] 29.7900  29.58502 29.44347
## [251,] 29.6213  29.65152 29.58502
## [252,] 29.8209  29.69880 29.65152
## [253,] 29.9359  29.79202 29.69880
## [254,] 29.9424  29.83012 29.79202
## [255,] 30.0357  29.93372 29.83012
## [256,] 29.9694  29.97085 29.93372
## [257,] 29.8404  29.94697 29.97085
## [258,] 29.8999  29.93635 29.94697
## [259,] 30.3835  30.02330 29.93635
## [260,] 30.5951  30.17972 30.02330
## [261,] 30.4646  30.33577 30.17972
## [262,] 30.5482  30.49785 30.33577
## [263,] 30.5621  30.54250 30.49785
## [264,] 30.4991  30.51850 30.54250
## [265,] 30.7277  30.58427 30.51850
## [266,] 30.2531  30.51050 30.58427
## [267,] 29.8751  30.33875 30.51050
## [268,] 29.7836  30.15987 30.33875
## [269,] 29.6953  29.90177 30.15987
## [270,] 29.5641  29.72952 29.90177
## [271,] 29.2289  29.56797 29.72952
## [272,] 28.9160  29.35107 29.56797
## [273,] 29.1891  29.22452 29.35107
## [274,] 29.2317  29.14142 29.22452
## [275,] 29.3304  29.16680 29.14142
## [276,] 29.3497  29.27522 29.16680
## [277,] 29.3051  29.30422 29.27522
## [278,] 29.2987  29.32097 29.30422
## [279,] 29.1891  29.28565 29.32097
## [280,] 29.2876  29.27012 29.28565
## [281,] 29.3521  29.28187 29.27012
## [282,] 29.3497  29.29462 29.28187
## [283,] 29.3897  29.34477 29.29462
## [284,] 29.3810  29.36812 29.34477
## [285,] 29.3717  29.37302 29.36812
## [286,] 29.4535  29.39897 29.37302
## [287,] 29.4503  29.41412 29.39897
## [288,] 29.5522  29.45692 29.41412
## [289,] 29.6012  29.51430 29.45692
## [290,] 29.5907  29.54860 29.51430
## [291,] 29.5852  29.58232 29.54860
## [292,] 29.3691  29.53655 29.58232
## [293,] 29.4654  29.50260 29.53655
## [294,] 29.7915  29.55280 29.50260
## [295,] 29.7173  29.58582 29.55280
## [296,] 29.6484  29.65565 29.58582
## [297,] 29.4692  29.65660 29.65565
## [298,] 29.2980  29.53322 29.65660
## [299,] 29.0454  29.36525 29.53322
## [300,] 28.7391  29.13792 29.36525
## [301,] 28.3387  28.85530 29.13792
## [302,] 28.4903  28.65337 28.85530
## [303,] 28.3424  28.47762 28.65337
## [304,] 27.8457  28.25427 28.47762
## [305,] 28.3378  28.25405 28.25427
## [306,] 28.8275  28.33835 28.25405
## [307,] 28.5514  28.39060 28.33835
## [308,] 28.1074  28.45602 28.39060
## [309,] 28.3067  28.44825 28.45602
## [310,] 28.3499  28.32885 28.44825
## [311,] 28.4541  28.30452 28.32885
## [312,] 28.4575  28.39205 28.30452
## [313,] 28.2260  28.37187 28.39205
## [314,] 27.8899  28.25687 28.37187
## [315,] 27.8931  28.11662 28.25687
## [316,]      NA        NA 28.11662
## [317,]      NA        NA 28.11662
## [318,]      NA        NA 28.11662
## [319,]      NA        NA 28.11662
## [320,]      NA        NA 28.11662
## [321,]      NA        NA 28.11662
## [322,]      NA        NA 28.11662
## [323,]      NA        NA 28.11662
## [324,]      NA        NA 28.11662
## [325,]      NA        NA 28.11662
## [326,]      NA        NA 28.11662
## [327,]      NA        NA 28.11662
## [328,]      NA        NA 28.11662
## [329,]      NA        NA 28.11662
## [330,]      NA        NA 28.11662
## [331,]      NA        NA 28.11662
## [332,]      NA        NA 28.11662
## [333,]      NA        NA 28.11662
## [334,]      NA        NA 28.11662
## [335,]      NA        NA 28.11662
## [336,]      NA        NA 28.11662
## [337,]      NA        NA 28.11662
## [338,]      NA        NA 28.11662
## [339,]      NA        NA 28.11662
## [340,]      NA        NA 28.11662
## [341,]      NA        NA 28.11662
## [342,]      NA        NA 28.11662
## [343,]      NA        NA 28.11662
## [344,]      NA        NA 28.11662
## [345,]      NA        NA 28.11662
## [346,]      NA        NA 28.11662
## [347,]      NA        NA 28.11662
## [348,]      NA        NA 28.11662
## [349,]      NA        NA 28.11662
## [350,]      NA        NA 28.11662
## [351,]      NA        NA 28.11662
## [352,]      NA        NA 28.11662
## [353,]      NA        NA 28.11662
## [354,]      NA        NA 28.11662
## [355,]      NA        NA 28.11662
## [356,]      NA        NA 28.11662
## [357,]      NA        NA 28.11662
## [358,]      NA        NA 28.11662
## [359,]      NA        NA 28.11662
## [360,]      NA        NA 28.11662
## [361,]      NA        NA 28.11662
## [362,]      NA        NA 28.11662
## [363,]      NA        NA 28.11662
## [364,]      NA        NA 28.11662
## [365,]      NA        NA 28.11662
## [366,]      NA        NA 28.11662
## [367,]      NA        NA 28.11662
## [368,]      NA        NA 28.11662
## [369,]      NA        NA 28.11662
## [370,]      NA        NA 28.11662
## [371,]      NA        NA 28.11662
## [372,]      NA        NA 28.11662
## [373,]      NA        NA 28.11662
## [374,]      NA        NA 28.11662
## [375,]      NA        NA 28.11662
## [376,]      NA        NA 28.11662
## [377,]      NA        NA 28.11662
## [378,]      NA        NA 28.11662
## [379,]      NA        NA 28.11662
## [380,]      NA        NA 28.11662
## [381,]      NA        NA 28.11662
## [382,]      NA        NA 28.11662
## [383,]      NA        NA 28.11662
## [384,]      NA        NA 28.11662
## [385,]      NA        NA 28.11662
## [386,]      NA        NA 28.11662
## [387,]      NA        NA 28.11662
## [388,]      NA        NA 28.11662
## [389,]      NA        NA 28.11662
## [390,]      NA        NA 28.11662
## [391,]      NA        NA 28.11662
## [392,]      NA        NA 28.11662
## [393,]      NA        NA 28.11662
## [394,]      NA        NA 28.11662
## [395,]      NA        NA 28.11662
## [396,]      NA        NA 28.11662
## [397,]      NA        NA 28.11662
## [398,]      NA        NA 28.11662
## [399,]      NA        NA 28.11662
## [400,]      NA        NA 28.11662
## [401,]      NA        NA 28.11662
## [402,]      NA        NA 28.11662
## [403,]      NA        NA 28.11662
## [404,]      NA        NA 28.11662
## [405,]      NA        NA 28.11662
## [406,]      NA        NA 28.11662
## [407,]      NA        NA 28.11662
## [408,]      NA        NA 28.11662
## [409,]      NA        NA 28.11662
## [410,]      NA        NA 28.11662
## [411,]      NA        NA 28.11662
## [412,]      NA        NA 28.11662
## [413,]      NA        NA 28.11662
## [414,]      NA        NA 28.11662
## [415,]      NA        NA 28.11662
## [416,]      NA        NA 28.11662
## [417,]      NA        NA 28.11662
## [418,]      NA        NA 28.11662
## [419,]      NA        NA 28.11662
## [420,]      NA        NA 28.11662
## [421,]      NA        NA 28.11662
## [422,]      NA        NA 28.11662
## [423,]      NA        NA 28.11662
## [424,]      NA        NA 28.11662
## [425,]      NA        NA 28.11662
## [426,]      NA        NA 28.11662
## [427,]      NA        NA 28.11662
## [428,]      NA        NA 28.11662
## [429,]      NA        NA 28.11662
## [430,]      NA        NA 28.11662
## [431,]      NA        NA 28.11662
## [432,]      NA        NA 28.11662
## [433,]      NA        NA 28.11662
## [434,]      NA        NA 28.11662
## [435,]      NA        NA 28.11662
## [436,]      NA        NA 28.11662
## [437,]      NA        NA 28.11662
## [438,]      NA        NA 28.11662
## [439,]      NA        NA 28.11662
## [440,]      NA        NA 28.11662
## [441,]      NA        NA 28.11662
## [442,]      NA        NA 28.11662
## [443,]      NA        NA 28.11662
## [444,]      NA        NA 28.11662
## [445,]      NA        NA 28.11662
## [446,]      NA        NA 28.11662
## [447,]      NA        NA 28.11662
## [448,]      NA        NA 28.11662
## [449,]      NA        NA 28.11662
## [450,]      NA        NA 28.11662
## [451,]      NA        NA 28.11662
## [452,]      NA        NA 28.11662
## [453,]      NA        NA 28.11662
## [454,]      NA        NA 28.11662
## [455,]      NA        NA 28.11662
## [456,]      NA        NA 28.11662
## [457,]      NA        NA 28.11662
## [458,]      NA        NA 28.11662
## [459,]      NA        NA 28.11662
## [460,]      NA        NA 28.11662
## [461,]      NA        NA 28.11662
## [462,]      NA        NA 28.11662
## [463,]      NA        NA 28.11662
## [464,]      NA        NA 28.11662
## [465,]      NA        NA 28.11662
## [466,]      NA        NA 28.11662
## [467,]      NA        NA 28.11662
## [468,]      NA        NA 28.11662
## [469,]      NA        NA 28.11662
## [470,]      NA        NA 28.11662
## [471,]      NA        NA 28.11662
## [472,]      NA        NA 28.11662
## [473,]      NA        NA 28.11662
## [474,]      NA        NA 28.11662
## [475,]      NA        NA 28.11662
## [476,]      NA        NA 28.11662
## [477,]      NA        NA 28.11662
## [478,]      NA        NA 28.11662
## [479,]      NA        NA 28.11662
## [480,]      NA        NA 28.11662
## [481,]      NA        NA 28.11662
## [482,]      NA        NA 28.11662
## [483,]      NA        NA 28.11662
## [484,]      NA        NA 28.11662
## [485,]      NA        NA 28.11662
## [486,]      NA        NA 28.11662
## [487,]      NA        NA 28.11662
## [488,]      NA        NA 28.11662
## [489,]      NA        NA 28.11662
## [490,]      NA        NA 28.11662
## [491,]      NA        NA 28.11662
## [492,]      NA        NA 28.11662
## [493,]      NA        NA 28.11662
## [494,]      NA        NA 28.11662
## [495,]      NA        NA 28.11662
## [496,]      NA        NA 28.11662
## [497,]      NA        NA 28.11662
## [498,]      NA        NA 28.11662
## [499,]      NA        NA 28.11662
## [500,]      NA        NA 28.11662

Adapun plot data deret waktu dari hasil peramalan yang dilakukan adalah sebagai berikut.

ts.plot(data.ts, xlab="Time Period ", ylab="Temperature", main= "SMA N=4 Data Temperature")
points(data.ts)
lines(data.gab[,2],col="green",lwd=2)
lines(data.gab[,3],col="red",lwd=2)
legend("topleft",c("data aktual","data pemulusan","data peramalan"), lty=8, col=c("black","green","red"), cex=0.5)

Selanjutnya perhitungan akurasi dilakukan dengan ukuran akurasi Sum Squares Error (SSE), Mean Square Error (MSE) dan Mean Absolute Percentage Error (MAPE). Perhitungan akurasi dilakukan baik pada data latih maupun pada data uji.

#Menghitung nilai keakuratan data latih
error_train.sma = train_ma.ts-data.ramal[1:length(train_ma.ts)]
SSE_train.sma = sum(error_train.sma[5:length(train_ma.ts)]^2)
MSE_train.sma = mean(error_train.sma[5:length(train_ma.ts)]^2)
MAPE_train.sma = mean(abs((error_train.sma[5:length(train_ma.ts)]/train_ma.ts[5:length(train_ma.ts)])*100))

akurasi_train.sma <- matrix(c(SSE_train.sma, MSE_train.sma, MAPE_train.sma))
row.names(akurasi_train.sma)<- c("SSE", "MSE", "MAPE")
colnames(akurasi_train.sma) <- c("Akurasi m = 4")
akurasi_train.sma
##      Akurasi m = 4
## SSE    28.93459764
## MSE     0.09303729
## MAPE    0.81463292

Dalam hal ini nilai MAPE data latih pada metode pemulusan SMA kurang dari 2%, nilai ini dapat dikategorikan sebagai nilai akurasi yang sangat baik. Selanjutnya dilakukan perhitungan nilai MAPE data uji pada metode pemulusan SMA.

#Menghitung nilai keakuratan data uji
error_test.sma = test_ma.ts-data.gab[316:500,3]
SSE_test.sma = sum(error_test.sma^2)
MSE_test.sma = mean(error_test.sma^2)
MAPE_test.sma = mean(abs((error_test.sma/test_ma.ts*100)))

akurasi_test.sma <- matrix(c(SSE_test.sma, MSE_test.sma, MAPE_test.sma))
row.names(akurasi_test.sma)<- c("SSE", "MSE", "MAPE")
colnames(akurasi_test.sma) <- c("Akurasi m = 4")
akurasi_test.sma
##      Akurasi m = 4
## SSE     71.8464262
## MSE      0.3883591
## MAPE     1.8480564

Perhitungan akurasi menggunakan data latih menghasilkan nilai MAPE yang kurang dari 2% sehingga nilai akurasi ini dapat dikategorikan sebagai sangat baik.

Double Moving Average (DMA)

Metode pemulusan Double Moving Average (DMA) pada dasarnya mirip dengan SMA. Namun demikian, metode ini lebih cocok digunakan untuk pola data trend. Proses pemulusan dengan rata rata dalam metode ini dilakukan sebanyak 2 kali.

dma <- SMA(data.sma, n = 4)
At <- 2*data.sma - dma
Bt <- 2/(4-1)*(data.sma - dma)
data.dma<- At+Bt
data.ramal2<- c(NA, data.dma)

t = 1:185
f = c()

for (i in t) {
  f[i] = At[length(At)] + Bt[length(Bt)]*(i)
}

data.gab2 <- cbind(aktual = c(train_ma.ts,rep(NA,185)), pemulusan1 = c(data.sma,rep(NA,185)),pemulusan2 = c(data.dma, rep(NA,185)),At = c(At, rep(NA,185)), Bt = c(Bt,rep(NA,185)),ramalan = c(data.ramal2, f[-1]))
data.gab2
##         aktual pemulusan1 pemulusan2       At            Bt   ramalan
##   [1,] 29.5199         NA         NA       NA            NA        NA
##   [2,] 29.7223         NA         NA       NA            NA        NA
##   [3,] 29.9959         NA         NA       NA            NA        NA
##   [4,] 30.1798   29.85448         NA       NA            NA        NA
##   [5,] 29.9898   29.97195         NA       NA            NA        NA
##   [6,] 29.5493   29.92870         NA       NA            NA        NA
##   [7,] 29.4496   29.79212   29.63431 29.69744 -0.0631250000        NA
##   [8,] 29.1447   29.53335   29.07805 29.26017 -0.1821208333 29.634312
##   [9,] 28.9804   29.28100   28.69301 28.92821 -0.2351958333 29.078048
##  [10,] 27.9646   28.88482   28.07149 28.39682 -0.3253333333 28.693010
##  [11,] 28.2861   28.59395   27.79506 28.11462 -0.3195541667 28.071492
##  [12,] 28.5817   28.45320   27.86979 28.10316 -0.2333625000 27.795065
##  [13,] 28.3704   28.30070   27.87159 28.04323 -0.1716458333 27.869794
##  [14,] 28.1310   28.34230   28.20857 28.26206 -0.0534916667 27.871585
##  [15,] 28.4389   28.38050   28.39937 28.39182  0.0075500000 28.208571
##  [16,] 28.4687   28.35225   28.36610 28.36056  0.0055416667 28.399375
##  [17,] 28.8089   28.46187   28.59128 28.53952  0.0517625000 28.366104
##  [18,] 28.1059   28.45560   28.52734 28.49864  0.0286958333 28.591281
##  [19,] 28.5539   28.48435   28.56074 28.53018  0.0305541667 28.527340
##  [20,] 27.8272   28.32397   28.14485 28.21650 -0.0716500000 28.560735
##  [21,] 27.8087   28.07392   27.63970 27.81339 -0.1736916667 28.144850
##  [22,] 27.7019   27.97292   27.57148 27.73206 -0.1605791667 27.639696
##  [23,] 28.0635   27.85032   27.50872 27.64536 -0.1366416667 27.571477
##  [24,] 28.4916   28.01642   28.07980 28.05445  0.0253500000 27.508721
##  [25,] 28.8819   28.28472   28.70743 28.53835  0.1690833333 28.079800
##  [26,] 28.9219   28.58972   29.26377 28.99415  0.2696166667 28.707433
##  [27,] 28.9509   28.81157   29.45485 29.19754  0.2573083333 29.263767
##  [28,] 28.8818   28.90912   29.34302 29.16946  0.1735583333 29.454846
##  [29,] 28.6812   28.85895   28.96996 28.92556  0.0444041667 29.343021
##  [30,] 28.7636   28.81937   28.76874 28.78899 -0.0202541667 28.969960
##  [31,] 28.8789   28.80137   28.72499 28.75554 -0.0305541667 28.768740
##  [32,] 29.1590   28.87067   28.92581 28.90376  0.0220541667 28.724990
##  [33,] 29.1560   28.98937   29.18800 29.10855  0.0794500000 28.925810
##  [34,] 28.8804   29.01857   29.18287 29.11715  0.0657166667 29.188000
##  [35,] 28.7361   28.98287   29.01204 29.00037  0.0116666667 29.182867
##  [36,] 28.9529   28.93135   28.84936 28.88216 -0.0327958333 29.012042
##  [37,] 28.9279   28.87432   28.74523 28.79687 -0.0516375000 28.849360
##  [38,] 28.8606   28.86937   28.79420 28.82427 -0.0300708333 28.745231
##  [39,] 28.9146   28.91400   28.94190 28.93074  0.0111583333 28.794198
##  [40,] 28.9805   28.92090   28.96465 28.94715  0.0175000000 28.941896
##  [41,] 28.7728   28.88212   28.85800 28.86765 -0.0096500000 28.964650
##  [42,] 28.5158   28.79592   28.65874 28.71361 -0.0548750000 28.858000
##  [43,] 28.3397   28.65220   28.38455 28.49161 -0.1070583333 28.658738
##  [44,] 28.4657   28.52350   28.20694 28.33356 -0.1266250000 28.384554
##  [45,] 28.6805   28.50042   28.30445 28.38284 -0.0783916667 28.206937
##  [46,] 28.6870   28.54322   28.52387 28.53161 -0.0077416667 28.304446
##  [47,] 28.6159   28.61227   28.72464 28.67969  0.0449458333 28.523871
##  [48,] 27.7069   28.42257   28.26083 28.32552 -0.0647000000 28.724640
##  [49,] 27.5755   28.14632   27.67170 27.86155 -0.1898500000 28.260825
##  [50,] 27.8705   27.94220   27.37779 27.60356 -0.2257625000 27.671700
##  [51,] 27.9734   27.78157   27.29559 27.48998 -0.1943958333 27.377794
##  [52,] 27.9205   27.83497   27.68282 27.74368 -0.0608625000 27.295585
##  [53,] 27.7864   27.88770   27.93118 27.91379  0.0173916667 27.682819
##  [54,] 27.8825   27.89070   27.96064 27.93266  0.0279750000 27.931179
##  [55,] 28.0314   27.90520   27.94779 27.93076  0.0170375000 27.960638
##  [56,] 27.7159   27.85405   27.80345 27.82369 -0.0202416667 27.947794
##  [57,] 27.3559   27.74642   27.57531 27.64376 -0.0684458333 27.803446
##  [58,] 27.5265   27.65742   27.43517 27.52407 -0.0889000000 27.575310
##  [59,] 28.5057   27.77600   27.80521 27.79352  0.0116833333 27.435175
##  [60,] 28.1900   27.89452   28.10441 28.02046  0.0839541667 27.805208
##  [61,] 28.4408   28.16575   28.65296 28.45807  0.1948833333 28.104410
##  [62,] 28.3829   28.37985   28.92288 28.70567  0.2172125000 28.652958
##  [63,] 28.1104   28.28102   28.44892 28.38176  0.0671583333 28.922881
##  [64,] 28.2804   28.30362   28.33873 28.32469  0.0140416667 28.448921
##  [65,] 28.6194   28.34827   28.38174 28.36836  0.0133875000 28.338729
##  [66,] 28.4554   28.36640   28.43568 28.40797  0.0277125000 28.381744
##  [67,] 28.2047   28.38997   28.45315 28.42788  0.0252708333 28.435681
##  [68,] 28.2589   28.38460   28.40508 28.39689  0.0081916667 28.453152
##  [69,] 28.4913   28.35257   28.31789 28.33176 -0.0138750000 28.405079
##  [70,] 28.5556   28.37762   28.38001 28.37906  0.0009541667 28.317887
##  [71,] 28.6541   28.48997   28.63794 28.57876  0.0591875000 28.380010
##  [72,] 28.6561   28.58927   28.81746 28.72619  0.0912750000 28.637944
##  [73,] 28.7888   28.66365   28.88618 28.79717  0.0890125000 28.817462
##  [74,] 29.0157   28.77867   29.02581 28.92696  0.0988541667 28.886181
##  [75,] 29.0545   28.87877   29.13074 29.02996  0.1007875000 29.025810
##  [76,] 28.7661   28.90627   29.07199 29.00571  0.0662875000 29.130744
##  [77,] 28.6243   28.86515   28.87837 28.87308  0.0052875000 29.071994
##  [78,] 28.7148   28.78992   28.67308 28.71982 -0.0467375000 28.878369
##  [79,] 28.6156   28.68020   28.46322 28.55001 -0.0867916667 28.673081
##  [80,] 28.5756   28.63257   28.45026 28.52319 -0.0729250000 28.463221
##  [81,] 28.5083   28.60357   28.48192 28.53058 -0.0486625000 28.450263
##  [82,] 28.6951   28.59865   28.54848 28.56855 -0.0200666667 28.481919
##  [83,] 28.8885   28.66687   28.73597 28.70833  0.0276375000 28.548483
##  [84,] 29.0858   28.79442   29.00866 28.92297  0.0856958333 28.735969
##  [85,] 29.3367   29.00152   29.39512 29.23768  0.1574375000 29.008665
##  [86,] 29.3574   29.16710   29.59980 29.42672  0.1730791667 29.395119
##  [87,] 29.3659   29.28645   29.65991 29.51052  0.1493833333 29.599798
##  [88,] 29.5487   29.40217   29.71528 29.59004  0.1252416667 29.659908
##  [89,] 29.3826   29.41365   29.57416 29.50996  0.0642041667 29.715279
##  [90,] 29.2164   29.37840   29.39212 29.38663  0.0054875000 29.574160
##  [91,] 29.1717   29.32985   29.24457 29.27868 -0.0341125000 29.392119
##  [92,] 29.1913   29.24050   29.07367 29.14040 -0.0667333333 29.244569
##  [93,] 29.0917   29.16777   28.98218 29.05642 -0.0742375000 29.073667
##  [94,] 29.0579   29.12815   28.98079 29.03973 -0.0589458333 28.982181
##  [95,] 29.0865   29.10685   29.01690 29.05288 -0.0359791667 28.980785
##  [96,] 29.0657   29.07545   29.00194 29.03134 -0.0294041667 29.016902
##  [97,] 28.6958   28.97647   28.81771 28.88122 -0.0635041667 29.001940
##  [98,] 29.1813   29.00732   28.95032 28.97312 -0.0228000000 28.817715
##  [99,] 29.0379   28.99517   28.96446 28.97674 -0.0122875000 28.950325
## [100,] 29.0966   29.00290   29.01529 29.01033  0.0049541667 28.964456
## [101,] 29.0987   29.10362   29.23091 29.17999  0.0509125000 29.015285
## [102,] 29.1217   29.08872   29.15726 29.12984  0.0274125000 29.230906
## [103,] 29.1019   29.10472   29.15428 29.13446  0.0198208333 29.157256
## [104,] 29.1644   29.12167   29.14999 29.13866  0.0113250000 29.154277
## [105,] 29.0476   29.10890   29.11372 29.11179  0.0019291667 29.149987
## [106,] 28.8890   29.05072   28.97442 29.00494 -0.0305208333 29.113723
## [107,] 28.9053   29.00157   28.88634 28.93243 -0.0460958333 28.974423
## [108,] 28.7631   28.90125   28.71065 28.78689 -0.0762416667 28.886335
## [109,] 28.8742   28.85790   28.69963 28.76294 -0.0633083333 28.710646
## [110,] 28.4464   28.74725   28.53101 28.61751 -0.0864958333 28.699629
## [111,] 28.5246   28.65207   28.42284 28.51453 -0.0916958333 28.531010
## [112,] 28.3630   28.55205   28.30160 28.40178 -0.1001791667 28.422835
## [113,] 28.6354   28.49235   28.29471 28.37377 -0.0790541667 28.301602
## [114,] 28.6541   28.54427   28.51775 28.52836 -0.0106083333 28.294715
## [115,] 28.8423   28.62370   28.74138 28.69431  0.0470708333 28.517754
## [116,] 28.9608   28.77315   29.04779 28.93793  0.1098541667 28.741377
## [117,] 28.9027   28.83998   29.08114 28.98468  0.0964666667 29.047785
## [118,] 29.1552   28.96525   29.23980 29.12998  0.1098208333 29.081142
## [119,] 29.0877   29.02660   29.23553 29.15196  0.0835708333 29.239802
## [120,] 29.6389   29.19613   29.51135 29.38526  0.1260916667 29.235527
## [121,] 29.6982   29.39500   29.81043 29.64426  0.1661708333 29.511354
## [122,] 29.7808   29.55140   29.98326 29.81052  0.1727458333 29.810427
## [123,] 29.4966   29.65363   29.99460 29.85821  0.1363916667 29.983265
## [124,] 29.5754   29.63775   29.76826 29.71606  0.0522041667 29.994604
## [125,] 29.0989   29.48793   29.33001 29.39318 -0.0631666667 29.768260
## [126,] 28.9608   29.28292   28.89521 29.05029 -0.1550875000 29.330008
## [127,] 29.1609   29.19900   28.86083 28.99610 -0.1352666667 28.895206
## [128,] 29.0164   29.05925   28.72921 28.86123 -0.1320166667 28.860833
## [129,] 28.9473   29.02135   28.82255 28.90207 -0.0795208333 28.729208
## [130,] 28.9675   29.02303   28.93531 28.97039 -0.0350875000 28.822548
## [131,] 28.8302   28.94035   28.82261 28.86971 -0.0470958333 28.935306
## [132,] 28.6650   28.85250   28.67449 28.74569 -0.0712041667 28.822610
## [133,] 28.4619   28.73115   28.47181 28.57554 -0.1037375000 28.674490
## [134,] 28.4709   28.60700   28.31408 28.43125 -0.1171666667 28.471806
## [135,] 28.4638   28.51540   28.24688 28.35429 -0.1074083333 28.314083
## [136,] 28.4209   28.45437   28.25003 28.33177 -0.0817375000 28.246879
## [137,] 28.2085   28.39102   28.22282 28.29010 -0.0672833333 28.250031
## [138,] 28.2293   28.33062   28.17691 28.23839 -0.0614875000 28.222817
## [139,] 28.2231   28.27045   28.11850 28.17928 -0.0607791667 28.176906
## [140,] 28.2874   28.23707   28.12004 28.16686 -0.0468125000 28.118502
## [141,] 28.3002   28.26000   28.23577 28.24546 -0.0096916667 28.120044
## [142,] 28.3738   28.29612   28.34648 28.32634  0.0201416667 28.235771
## [143,] 28.5223   28.37092   28.50408 28.45082  0.0532625000 28.346479
## [144,] 28.5414   28.43442   28.59119 28.52848  0.0627041667 28.504081
## [145,] 28.7043   28.53545   28.74581 28.66167  0.0841458333 28.591185
## [146,] 28.8556   28.65590   28.91711 28.81263  0.1044833333 28.745815
## [147,] 28.9272   28.75712   29.02613 28.91852  0.1076000000 28.917108
## [148,] 28.8710   28.83952   29.07707 28.98205  0.0950166667 29.026125
## [149,] 28.7337   28.84687   28.96691 28.91889  0.0480125000 29.077067
## [150,] 28.6112   28.78577   28.74986 28.76423 -0.0143666667 28.966906
## [151,] 28.6687   28.72115   28.59251 28.64397 -0.0514541667 28.749858
## [152,] 28.5697   28.64582   28.47236 28.54174 -0.0693875000 28.592515
## [153,] 28.5356   28.59630   28.44470 28.50534 -0.0606416667 28.472356
## [154,] 28.3534   28.53185   28.37863 28.43992 -0.0612875000 28.444696
## [155,] 28.3467   28.45135   28.27638 28.34637 -0.0699875000 28.378631
## [156,] 28.3951   28.40770   28.25920 28.31860 -0.0594000000 28.276381
## [157,] 28.4195   28.37867   28.27248 28.31496 -0.0424791667 28.259200
## [158,] 28.4098   28.39278   28.36803 28.37793 -0.0099000000 28.272477
## [159,] 28.3591   28.39588   28.39941 28.39799  0.0014125000 28.368025
## [160,] 28.2628   28.36280   28.32991 28.34307 -0.0131541667 28.399406
## [161,] 28.1886   28.30508   28.20665 28.24602 -0.0393708333 28.329915
## [162,] 28.0115   28.20550   28.01915 28.09369 -0.0745416667 28.206648
## [163,] 27.8257   28.07215   27.79843 27.90792 -0.1094875000 28.019146
## [164,] 28.1628   28.04715   27.86329 27.93683 -0.0735458333 27.798431
## [165,] 27.9451   27.98627   27.83379 27.89478 -0.0609958333 27.863285
## [166,] 27.7951   27.93217   27.80340 27.85491 -0.0515083333 27.833785
## [167,] 27.8084   27.92785   27.85200 27.88234 -0.0303416667 27.803404
## [168,] 28.0367   27.89632   27.83077 27.85699 -0.0262208333 27.851996
## [169,] 28.2775   27.97942   28.05523 28.02491  0.0303208333 27.830773
## [170,] 28.4582   28.14520   28.40853 28.30320  0.1053333333 28.055227
## [171,] 28.2903   28.26567   28.58904 28.45969  0.1293458333 28.408533
## [172,] 28.5323   28.38957   28.71392 28.58418  0.1297375000 28.589040
## [173,] 28.1721   28.36322   28.48374 28.43553  0.0482041667 28.713919
## [174,] 28.3573   28.33800   28.33614 28.33688 -0.0007458333 28.483735
## [175,] 28.0333   28.27375   28.16144 28.20636 -0.0449250000 28.336135
## [176,] 27.4726   28.00882   27.61362 27.77170 -0.1580833333 28.161438
## [177,] 27.8366   27.92495   27.57256 27.71352 -0.1409541667 27.613617
## [178,] 28.3183   27.91520   27.72273 27.79972 -0.0769875000 27.572565
## [179,] 28.1946   27.95552   27.96286 27.95993  0.0029333333 27.722731
## [180,] 28.2515   28.15025   28.42320 28.31402  0.1091791667 27.962858
## [181,] 28.3145   28.26972   28.59814 28.46678  0.1313666667 28.423198
## [182,] 28.3974   28.28950   28.49492 28.41275  0.0821666667 28.598142
## [183,] 28.6212   28.39615   28.59572 28.51589  0.0798291667 28.494917
## [184,] 28.9689   28.57550   28.89680 28.76828  0.1285208333 28.595723
## [185,] 28.8841   28.71790   29.08980 28.94104  0.1487583333 28.896802
## [186,] 28.8430   28.82930   29.16195 29.02889  0.1330583333 29.089796
## [187,] 28.7138   28.85245   29.03355 28.96111  0.0724416667 29.161946
## [188,] 28.3242   28.69127   28.55551 28.60982 -0.0543041667 29.033554
## [189,] 28.1319   28.50322   28.14350 28.28739 -0.1438916667 28.555515
## [190,] 28.1411   28.32775   27.88454 28.06183 -0.1772833333 28.143496
## [191,] 28.1120   28.17730   27.76465 27.92971 -0.1650583333 27.884542
## [192,] 28.2209   28.15148   27.92070 28.01301 -0.0923083333 27.764654
## [193,] 28.1866   28.16515   28.09804 28.12488 -0.0268458333 27.920704
## [194,] 28.2380   28.18938   28.22029 28.20793  0.0123666667 28.098035
## [195,] 27.9726   28.15453   28.13685 28.14392 -0.0070708333 28.220292
## [196,] 28.1896   28.14670   28.11797 28.12946 -0.0114916667 28.136848
## [197,] 28.1340   28.13355   28.09607 28.11106 -0.0149916667 28.117971
## [198,] 28.2772   28.14335   28.14138 28.14217 -0.0007875000 28.096071
## [199,] 28.6098   28.30265   28.50446 28.42374  0.0807250000 28.141381
## [200,] 28.7790   28.45000   28.77102 28.64261  0.1284083333 28.504463
## [201,] 28.4777   28.53592   28.83250 28.71387  0.1186291667 28.771021
## [202,] 28.4286   28.57377   28.75409 28.68196  0.0721250000 28.832498
## [203,] 28.9549   28.66005   28.83524 28.76516  0.0700750000 28.754088
## [204,] 28.6774   28.63465   28.69057 28.66820  0.0223666667 28.835238
## [205,] 28.8718   28.73318   28.87111 28.81594  0.0551750000 28.690567
## [206,] 29.1314   28.90887   29.20002 29.08356  0.1164583333 28.871113
## [207,] 28.7958   28.86910   29.00685 28.95175  0.0551000000 29.200021
## [208,] 28.5954   28.84860   28.86304 28.85726  0.0057750000 29.006850
## [209,] 28.6361   28.78967   28.68236 28.72529 -0.0429250000 28.863038
## [210,] 28.6365   28.66595   28.45365 28.53857 -0.0849208333 28.682363
## [211,] 28.9991   28.71677   28.65265 28.67830 -0.0256500000 28.453648
## [212,] 29.2690   28.88517   29.08648 29.00596  0.0805208333 28.652650
## [213,] 29.4928   29.09935   29.52858 29.35689  0.1716916667 29.086477
## [214,] 29.4490   29.30247   29.80503 29.60401  0.2010208333 29.528579
## [215,] 29.7932   29.50100   30.00767 29.80500  0.2026666667 29.805027
## [216,] 29.9821   29.67927   30.15219 29.96303  0.1891666667 30.007667
## [217,] 29.9750   29.79982   30.18179 30.02901  0.1527875000 30.152192
## [218,] 29.5781   29.83210   30.04718 29.96115  0.0860333333 30.181794
## [219,] 29.6100   29.78630   29.80618 29.79823  0.0079500000 30.047183
## [220,] 29.7066   29.71742   29.60661 29.65094 -0.0443250000 29.806175
## [221,] 29.6374   29.63302   29.45105 29.52384 -0.0727916667 29.606613
## [222,] 29.1732   29.53180   29.30624 29.39646 -0.0902250000 29.451046
## [223,] 29.1742   29.42285   29.16714 29.26943 -0.1022833333 29.306238
## [224,] 29.0042   29.24725   28.89478 29.03577 -0.1409875000 29.167142
## [225,] 29.1637   29.12883   28.78906 28.92497 -0.1359041667 28.894781
## [226,] 29.1321   29.11855   28.93385 29.00773 -0.0738791667 28.789065
## [227,] 29.1635   29.11587   29.05463 29.07913 -0.0245000000 28.933852
## [228,] 29.1499   29.15230   29.19132 29.17571  0.0156083333 29.054625
## [229,] 29.4553   29.22520   29.34556 29.29742  0.0481458333 29.191321
## [230,] 29.4804   29.31227   29.49705 29.42314  0.0739083333 29.345565
## [231,] 29.5822   29.41695   29.65073 29.55722  0.0935125000 29.497046
## [232,] 29.7202   29.55952   29.86125 29.74056  0.1206916667 29.650731
## [233,] 29.5103   29.57327   29.75289 29.68104  0.0718458333 29.861254
## [234,] 29.3410   29.53842   29.56573 29.55481  0.0109208333 29.752890
## [235,] 29.3616   29.48327   29.39103 29.42793 -0.0369000000 29.565727
## [236,] 29.3414   29.38857   29.20972 29.28126 -0.0715416667 29.391025
## [237,] 29.3577   29.35042   29.20084 29.26068 -0.0598333333 29.209721
## [238,] 29.2527   29.32835   29.22951 29.26904 -0.0395375000 29.200842
## [239,] 29.2538   29.30140   29.23342 29.26061 -0.0271916667 29.229506
## [240,] 29.2685   29.28317   29.22874 29.25051 -0.0217750000 29.233421
## [241,] 29.3493   29.28107   29.25203 29.26365 -0.0116166667 29.228738
## [242,] 29.6227   29.37357   29.47986 29.43734  0.0425125000 29.252033
## [243,] 29.6110   29.46287   29.65071 29.57558  0.0751333333 29.479856
## [244,] 29.4200   29.50075   29.66105 29.59693  0.0641208333 29.650708
## [245,] 29.3647   29.50460   29.57818 29.54875  0.0294333333 29.661052
## [246,] 29.2238   29.40487   29.29921 29.34148 -0.0422666667 29.578183
## [247,] 29.3553   29.34095   29.17954 29.24411 -0.0645625000 29.299208
## [248,] 29.6318   29.39390   29.36526 29.37672 -0.0114541667 29.179544
## [249,] 29.5630   29.44347   29.52293 29.49115  0.0317833333 29.365265
## [250,] 29.7900   29.58502   29.82534 29.72921  0.0961250000 29.522933
## [251,] 29.6213   29.65152   29.87326 29.78457  0.0886958333 29.825338
## [252,] 29.8209   29.69880   29.87229 29.80289  0.0693958333 29.873265
## [253,] 29.9359   29.79202   29.97566 29.90221  0.0734541667 29.872290
## [254,] 29.9424   29.83012   29.97514 29.91713  0.0580041667 29.975660
## [255,] 30.0357   29.93372   30.13382 30.05378  0.0800375000 29.975135
## [256,] 29.9694   29.97085   30.11946 30.06002  0.0594458333 30.133819
## [257,] 29.8404   29.94697   29.99124 29.97353  0.0177041667 30.119465
## [258,] 29.8999   29.93635   29.91864 29.92573 -0.0070833333 29.991235
## [259,] 30.3835   30.02330   30.11319 30.07723  0.0359541667 29.918642
## [260,] 30.5951   30.17972   30.44329 30.33786  0.1054250000 30.113185
## [261,] 30.4646   30.33577   30.69742 30.55276  0.1446583333 30.443288
## [262,] 30.5482   30.49785   30.89566 30.73654  0.1591250000 30.697421
## [263,] 30.5621   30.54250   30.79840 30.69604  0.1023583333 30.895663
## [264,] 30.4991   30.51850   30.59324 30.56334  0.0298958333 30.798396
## [265,] 30.7277   30.58427   30.66510 30.63277  0.0323291667 30.593240
## [266,] 30.2531   30.51050   30.46309 30.48206 -0.0189625000 30.665098
## [267,] 29.8751   30.33875   30.08999 30.18949 -0.0995041667 30.463094
## [268,] 29.7836   30.15987   29.76242 29.92140 -0.1589833333 30.089990
## [269,] 29.6953   29.90177   29.35853 29.57583 -0.2173000000 29.762417
## [270,] 29.5641   29.72952   29.22460 29.42657 -0.2019708333 29.358525
## [271,] 29.2289   29.56797   29.11495 29.29616 -0.1812083333 29.224598
## [272,] 28.9160   29.35107   28.87355 29.06456 -0.1910083333 29.114954
## [273,] 29.1891   29.22452   28.81828 28.98078 -0.1625000000 28.873554
## [274,] 29.2317   29.14142   28.84172 28.96160 -0.1198833333 28.818275
## [275,] 29.3304   29.16680   29.07654 29.11264 -0.0361041667 28.841717
## [276,] 29.3497   29.27522   29.39728 29.34846  0.0488208333 29.076540
## [277,] 29.3051   29.30422   29.44140 29.38653  0.0548708333 29.397277
## [278,] 29.2987   29.32097   29.41126 29.37514  0.0361125000 29.441402
## [279,] 29.1891   29.28565   29.26754 29.27478 -0.0072458333 29.411256
## [280,] 29.2876   29.27012   29.22826 29.24501 -0.0167458333 29.267535
## [281,] 29.3521   29.28187   29.26891 29.27409 -0.0051875000 29.228260
## [282,] 29.3497   29.29462   29.31389 29.30618  0.0077041667 29.268906
## [283,] 29.3897   29.34477   29.42298 29.39170  0.0312833333 29.313885
## [284,] 29.3810   29.36812   29.44442 29.41390  0.0305166667 29.422983
## [285,] 29.3717   29.37302   29.41950 29.40091  0.0185916667 29.444417
## [286,] 29.4535   29.39897   29.44523 29.42673  0.0185000000 29.419504
## [287,] 29.4503   29.41412   29.45673 29.43969  0.0170416667 29.445225
## [288,] 29.5522   29.45692   29.53386 29.50309  0.0307750000 29.456729
## [289,] 29.6012   29.51430   29.62800 29.58252  0.0454791667 29.533863
## [290,] 29.5907   29.54860   29.65712 29.61371  0.0434083333 29.627998
## [291,] 29.5852   29.58232   29.67697 29.63911  0.0378583333 29.657121
## [292,] 29.3691   29.53655   29.52173 29.52766 -0.0059291667 29.676971
## [293,] 29.4654   29.50260   29.43607 29.46268 -0.0266125000 29.521727
## [294,] 29.7915   29.55280   29.56819 29.56203  0.0061541667 29.436069
## [295,] 29.7173   29.58582   29.65479 29.62721  0.0275875000 29.568185
## [296,] 29.6484   29.65565   29.79137 29.73708  0.0542875000 29.654794
## [297,] 29.4692   29.65660   29.72974 29.70048  0.0292541667 29.791369
## [298,] 29.2980   29.53322   29.40889 29.45863 -0.0497333333 29.729735
## [299,] 29.0454   29.36525   29.05286 29.17782 -0.1249541667 29.408892
## [300,] 28.7391   29.13792   28.66238 28.85260 -0.1902166667 29.052865
## [301,] 28.3387   28.85530   28.24259 28.48768 -0.2450833333 28.662383
## [302,] 28.4903   28.65337   28.07073 28.30379 -0.2330583333 28.242592
## [303,] 28.3424   28.47762   27.97191 28.17419 -0.2022875000 28.070729
## [304,] 27.8457   28.25427   27.74449 27.94841 -0.2039125000 27.971906
## [305,] 28.3378   28.25405   27.99441 28.09827 -0.1038541667 27.744494
## [306,] 28.8275   28.33835   28.35048 28.34563  0.0048500000 27.994415
## [307,] 28.5514   28.39060   28.52607 28.47188  0.0541875000 28.350475
## [308,] 28.1074   28.45602   28.61647 28.55229  0.0641791667 28.526069
## [309,] 28.3067   28.44825   28.51482 28.48819  0.0266291667 28.616473
## [310,] 28.3499   28.32885   28.20038 28.25177 -0.0513875000 28.514823
## [311,] 28.4541   28.30452   28.17138 28.22464 -0.0532583333 28.200381
## [312,] 28.4575   28.39205   28.43144 28.41568  0.0157541667 28.171379
## [313,] 28.2260   28.37187   28.40946 28.39443  0.0150333333 28.431435
## [314,] 27.8899   28.25687   28.13278 28.18242 -0.0496375000 28.409458
## [315,] 27.8931   28.11662   27.83707 27.94889 -0.1118208333 28.132781
## [316,]      NA         NA         NA       NA            NA 27.837073
## [317,]      NA         NA         NA       NA            NA 27.725252
## [318,]      NA         NA         NA       NA            NA 27.613431
## [319,]      NA         NA         NA       NA            NA 27.501610
## [320,]      NA         NA         NA       NA            NA 27.389790
## [321,]      NA         NA         NA       NA            NA 27.277969
## [322,]      NA         NA         NA       NA            NA 27.166148
## [323,]      NA         NA         NA       NA            NA 27.054327
## [324,]      NA         NA         NA       NA            NA 26.942506
## [325,]      NA         NA         NA       NA            NA 26.830685
## [326,]      NA         NA         NA       NA            NA 26.718865
## [327,]      NA         NA         NA       NA            NA 26.607044
## [328,]      NA         NA         NA       NA            NA 26.495223
## [329,]      NA         NA         NA       NA            NA 26.383402
## [330,]      NA         NA         NA       NA            NA 26.271581
## [331,]      NA         NA         NA       NA            NA 26.159760
## [332,]      NA         NA         NA       NA            NA 26.047940
## [333,]      NA         NA         NA       NA            NA 25.936119
## [334,]      NA         NA         NA       NA            NA 25.824298
## [335,]      NA         NA         NA       NA            NA 25.712477
## [336,]      NA         NA         NA       NA            NA 25.600656
## [337,]      NA         NA         NA       NA            NA 25.488835
## [338,]      NA         NA         NA       NA            NA 25.377015
## [339,]      NA         NA         NA       NA            NA 25.265194
## [340,]      NA         NA         NA       NA            NA 25.153373
## [341,]      NA         NA         NA       NA            NA 25.041552
## [342,]      NA         NA         NA       NA            NA 24.929731
## [343,]      NA         NA         NA       NA            NA 24.817910
## [344,]      NA         NA         NA       NA            NA 24.706090
## [345,]      NA         NA         NA       NA            NA 24.594269
## [346,]      NA         NA         NA       NA            NA 24.482448
## [347,]      NA         NA         NA       NA            NA 24.370627
## [348,]      NA         NA         NA       NA            NA 24.258806
## [349,]      NA         NA         NA       NA            NA 24.146985
## [350,]      NA         NA         NA       NA            NA 24.035165
## [351,]      NA         NA         NA       NA            NA 23.923344
## [352,]      NA         NA         NA       NA            NA 23.811523
## [353,]      NA         NA         NA       NA            NA 23.699702
## [354,]      NA         NA         NA       NA            NA 23.587881
## [355,]      NA         NA         NA       NA            NA 23.476060
## [356,]      NA         NA         NA       NA            NA 23.364240
## [357,]      NA         NA         NA       NA            NA 23.252419
## [358,]      NA         NA         NA       NA            NA 23.140598
## [359,]      NA         NA         NA       NA            NA 23.028777
## [360,]      NA         NA         NA       NA            NA 22.916956
## [361,]      NA         NA         NA       NA            NA 22.805135
## [362,]      NA         NA         NA       NA            NA 22.693315
## [363,]      NA         NA         NA       NA            NA 22.581494
## [364,]      NA         NA         NA       NA            NA 22.469673
## [365,]      NA         NA         NA       NA            NA 22.357852
## [366,]      NA         NA         NA       NA            NA 22.246031
## [367,]      NA         NA         NA       NA            NA 22.134210
## [368,]      NA         NA         NA       NA            NA 22.022390
## [369,]      NA         NA         NA       NA            NA 21.910569
## [370,]      NA         NA         NA       NA            NA 21.798748
## [371,]      NA         NA         NA       NA            NA 21.686927
## [372,]      NA         NA         NA       NA            NA 21.575106
## [373,]      NA         NA         NA       NA            NA 21.463285
## [374,]      NA         NA         NA       NA            NA 21.351465
## [375,]      NA         NA         NA       NA            NA 21.239644
## [376,]      NA         NA         NA       NA            NA 21.127823
## [377,]      NA         NA         NA       NA            NA 21.016002
## [378,]      NA         NA         NA       NA            NA 20.904181
## [379,]      NA         NA         NA       NA            NA 20.792360
## [380,]      NA         NA         NA       NA            NA 20.680540
## [381,]      NA         NA         NA       NA            NA 20.568719
## [382,]      NA         NA         NA       NA            NA 20.456898
## [383,]      NA         NA         NA       NA            NA 20.345077
## [384,]      NA         NA         NA       NA            NA 20.233256
## [385,]      NA         NA         NA       NA            NA 20.121435
## [386,]      NA         NA         NA       NA            NA 20.009615
## [387,]      NA         NA         NA       NA            NA 19.897794
## [388,]      NA         NA         NA       NA            NA 19.785973
## [389,]      NA         NA         NA       NA            NA 19.674152
## [390,]      NA         NA         NA       NA            NA 19.562331
## [391,]      NA         NA         NA       NA            NA 19.450510
## [392,]      NA         NA         NA       NA            NA 19.338690
## [393,]      NA         NA         NA       NA            NA 19.226869
## [394,]      NA         NA         NA       NA            NA 19.115048
## [395,]      NA         NA         NA       NA            NA 19.003227
## [396,]      NA         NA         NA       NA            NA 18.891406
## [397,]      NA         NA         NA       NA            NA 18.779585
## [398,]      NA         NA         NA       NA            NA 18.667765
## [399,]      NA         NA         NA       NA            NA 18.555944
## [400,]      NA         NA         NA       NA            NA 18.444123
## [401,]      NA         NA         NA       NA            NA 18.332302
## [402,]      NA         NA         NA       NA            NA 18.220481
## [403,]      NA         NA         NA       NA            NA 18.108660
## [404,]      NA         NA         NA       NA            NA 17.996840
## [405,]      NA         NA         NA       NA            NA 17.885019
## [406,]      NA         NA         NA       NA            NA 17.773198
## [407,]      NA         NA         NA       NA            NA 17.661377
## [408,]      NA         NA         NA       NA            NA 17.549556
## [409,]      NA         NA         NA       NA            NA 17.437735
## [410,]      NA         NA         NA       NA            NA 17.325915
## [411,]      NA         NA         NA       NA            NA 17.214094
## [412,]      NA         NA         NA       NA            NA 17.102273
## [413,]      NA         NA         NA       NA            NA 16.990452
## [414,]      NA         NA         NA       NA            NA 16.878631
## [415,]      NA         NA         NA       NA            NA 16.766810
## [416,]      NA         NA         NA       NA            NA 16.654990
## [417,]      NA         NA         NA       NA            NA 16.543169
## [418,]      NA         NA         NA       NA            NA 16.431348
## [419,]      NA         NA         NA       NA            NA 16.319527
## [420,]      NA         NA         NA       NA            NA 16.207706
## [421,]      NA         NA         NA       NA            NA 16.095885
## [422,]      NA         NA         NA       NA            NA 15.984065
## [423,]      NA         NA         NA       NA            NA 15.872244
## [424,]      NA         NA         NA       NA            NA 15.760423
## [425,]      NA         NA         NA       NA            NA 15.648602
## [426,]      NA         NA         NA       NA            NA 15.536781
## [427,]      NA         NA         NA       NA            NA 15.424960
## [428,]      NA         NA         NA       NA            NA 15.313140
## [429,]      NA         NA         NA       NA            NA 15.201319
## [430,]      NA         NA         NA       NA            NA 15.089498
## [431,]      NA         NA         NA       NA            NA 14.977677
## [432,]      NA         NA         NA       NA            NA 14.865856
## [433,]      NA         NA         NA       NA            NA 14.754035
## [434,]      NA         NA         NA       NA            NA 14.642215
## [435,]      NA         NA         NA       NA            NA 14.530394
## [436,]      NA         NA         NA       NA            NA 14.418573
## [437,]      NA         NA         NA       NA            NA 14.306752
## [438,]      NA         NA         NA       NA            NA 14.194931
## [439,]      NA         NA         NA       NA            NA 14.083110
## [440,]      NA         NA         NA       NA            NA 13.971290
## [441,]      NA         NA         NA       NA            NA 13.859469
## [442,]      NA         NA         NA       NA            NA 13.747648
## [443,]      NA         NA         NA       NA            NA 13.635827
## [444,]      NA         NA         NA       NA            NA 13.524006
## [445,]      NA         NA         NA       NA            NA 13.412185
## [446,]      NA         NA         NA       NA            NA 13.300365
## [447,]      NA         NA         NA       NA            NA 13.188544
## [448,]      NA         NA         NA       NA            NA 13.076723
## [449,]      NA         NA         NA       NA            NA 12.964902
## [450,]      NA         NA         NA       NA            NA 12.853081
## [451,]      NA         NA         NA       NA            NA 12.741260
## [452,]      NA         NA         NA       NA            NA 12.629440
## [453,]      NA         NA         NA       NA            NA 12.517619
## [454,]      NA         NA         NA       NA            NA 12.405798
## [455,]      NA         NA         NA       NA            NA 12.293977
## [456,]      NA         NA         NA       NA            NA 12.182156
## [457,]      NA         NA         NA       NA            NA 12.070335
## [458,]      NA         NA         NA       NA            NA 11.958515
## [459,]      NA         NA         NA       NA            NA 11.846694
## [460,]      NA         NA         NA       NA            NA 11.734873
## [461,]      NA         NA         NA       NA            NA 11.623052
## [462,]      NA         NA         NA       NA            NA 11.511231
## [463,]      NA         NA         NA       NA            NA 11.399410
## [464,]      NA         NA         NA       NA            NA 11.287590
## [465,]      NA         NA         NA       NA            NA 11.175769
## [466,]      NA         NA         NA       NA            NA 11.063948
## [467,]      NA         NA         NA       NA            NA 10.952127
## [468,]      NA         NA         NA       NA            NA 10.840306
## [469,]      NA         NA         NA       NA            NA 10.728485
## [470,]      NA         NA         NA       NA            NA 10.616665
## [471,]      NA         NA         NA       NA            NA 10.504844
## [472,]      NA         NA         NA       NA            NA 10.393023
## [473,]      NA         NA         NA       NA            NA 10.281202
## [474,]      NA         NA         NA       NA            NA 10.169381
## [475,]      NA         NA         NA       NA            NA 10.057560
## [476,]      NA         NA         NA       NA            NA  9.945740
## [477,]      NA         NA         NA       NA            NA  9.833919
## [478,]      NA         NA         NA       NA            NA  9.722098
## [479,]      NA         NA         NA       NA            NA  9.610277
## [480,]      NA         NA         NA       NA            NA  9.498456
## [481,]      NA         NA         NA       NA            NA  9.386635
## [482,]      NA         NA         NA       NA            NA  9.274815
## [483,]      NA         NA         NA       NA            NA  9.162994
## [484,]      NA         NA         NA       NA            NA  9.051173
## [485,]      NA         NA         NA       NA            NA  8.939352
## [486,]      NA         NA         NA       NA            NA  8.827531
## [487,]      NA         NA         NA       NA            NA  8.715710
## [488,]      NA         NA         NA       NA            NA  8.603890
## [489,]      NA         NA         NA       NA            NA  8.492069
## [490,]      NA         NA         NA       NA            NA  8.380248
## [491,]      NA         NA         NA       NA            NA  8.268427
## [492,]      NA         NA         NA       NA            NA  8.156606
## [493,]      NA         NA         NA       NA            NA  8.044785
## [494,]      NA         NA         NA       NA            NA  7.932965
## [495,]      NA         NA         NA       NA            NA  7.821144
## [496,]      NA         NA         NA       NA            NA  7.709323
## [497,]      NA         NA         NA       NA            NA  7.597502
## [498,]      NA         NA         NA       NA            NA  7.485681
## [499,]      NA         NA         NA       NA            NA  7.373860
## [500,]      NA         NA         NA       NA            NA  7.262040

Hasil pemulusan menggunakan metode DMA divisualisasikan sebagai berikut

ts.plot(data.ts, xlab="Time Period ", ylab="Temperature", main= "DMA N=4 Data Temperature")
points(data.ts)
lines(data.gab2[,3],col="green",lwd=2)
lines(data.gab2[,6],col="red",lwd=2)
legend("topleft",c("data aktual","data pemulusan","data peramalan"), lty=8, col=c("black","green","red"), cex=0.8)

Selanjutnya perhitungan akurasi dilakukan baik pada data latih maupun data uji. Perhitungan akurasi dilakukan dengan ukuran akurasi SSE, MSE dan MAPE.

#Menghitung nilai keakuratan data latih
error_train.dma = train_ma.ts-data.ramal2[1:length(train_ma.ts)]
SSE_train.dma = sum(error_train.dma[8:length(train_ma.ts)]^2)
MSE_train.dma = mean(error_train.dma[8:length(train_ma.ts)]^2)
MAPE_train.dma = mean(abs((error_train.dma[8:length(train_ma.ts)]/train_ma.ts[8:length(train_ma.ts)])*100))

akurasi_train.dma <- matrix(c(SSE_train.dma, MSE_train.dma, MAPE_train.dma))
row.names(akurasi_train.dma)<- c("SSE", "MSE", "MAPE")
colnames(akurasi_train.dma) <- c("Akurasi m = 4")
akurasi_train.dma
##      Akurasi m = 4
## SSE    29.41270968
## MSE     0.09549581
## MAPE    0.83015255

Perhitungan akurasi pada data latih menggunakan nilai MAPE menghasilkan nilai MAPE yang kurang dari 2% sehingga dikategorikan sangat baik. Selanjutnya, perhitungan nilai akurasi dilakukan pada data uji.

#Menghitung nilai keakuratan data uji
error_test.dma = test_ma.ts-data.gab2[316:500,6]
SSE_test.dma = sum(error_test.dma^2)
MSE_test.dma = mean(error_test.dma^2)
MAPE_test.dma = mean(abs((error_test.dma/test_ma.ts*100)))

akurasi_test.dma <- matrix(c(SSE_test.dma, MSE_test.dma, MAPE_test.dma))
row.names(akurasi_test.dma)<- c("SSE", "MSE", "MAPE")
colnames(akurasi_test.dma) <- c("Akurasi m = 4")
akurasi_test.dma
##      Akurasi m = 4
## SSE    28030.63888
## MSE      151.51697
## MAPE      37.34898

Perhitungan akurasi menggunakan data latih menghasilkan nilai MAPE yang kurang dari 50% sehingga nilai akurasi ini dapat dikategorikan sebagai reasonable forecasting.

Pada data latih dan uji, metode SMA lebih baik dibandingkan dengan metode DMA.

Single Exponential Smoothing & Double Exponential Smoothing

Metode Exponential Smoothing adalah metode pemulusan dengan melakukan pembobotan menurun secara eksponensial. Nilai yang lebih baru diberi bobot yang lebih besar dari nilai terdahulu. Terdapat satu atau lebih parameter pemulusan yang ditentukan secara eksplisit, dan hasil pemilihan parameter tersebut akan menentukan bobot yang akan diberikan pada nilai pengamatan. Ada dua macam model, yaitu model tunggal dan ganda.

Pembagian Data

Pembagian data latih dan data uji dilakukan dengan perbandingan 63% data latih dan 37% data uji.

#membagi training dan testing
training<-data[1:315,]
testing<-data[316:500,]
train.ts <- ts(training$temperature)
test.ts <- ts(testing$temperature)

Eksplorasi

Eksplorasi dilakukan dengan membuat plot data deret waktu untuk keseluruhan data, data latih, dan data uji.

#eksplorasi data
plot(data.ts, col="black",main="Plot semua data")
points(data.ts)

plot(train.ts, col="red",main="Plot data latih")
points(train.ts)

plot(test.ts, col="blue",main="Plot data uji")
points(test.ts)

Eksplorasi data juga dapat dilakukan menggunakan package ggplot2 .

#Eksplorasi dengan GGPLOT
library(ggplot2)
ggplot() + 
  geom_line(data = training, aes(x = date, y = temperature, col = "Data Latih")) +
  geom_line(data = testing, aes(x = date, y = temperature, col = "Data Uji")) +
  labs(x = "Periode Waktu", y = "Temperature", color = "Legend") +
  scale_colour_manual(name="Keterangan:", breaks = c("Data Latih", "Data Uji"),
                      values = c("blue", "red")) + 
  theme_bw() + theme(legend.position = "bottom",
                     plot.caption = element_text(hjust=0.5, size=12))

SES

Single Exponential Smoothing merupakan metode pemulusan yang tepat digunakan untuk data dengan pola stasioner atau konstan.

Nilai pemulusan pada periode ke-t didapat dari persamaan:

\[ \tilde{y}_T=\lambda y_t+(1-\lambda)\tilde{y}_{T-1} \]

Nilai parameter \(\lambda\) adalah nilai antara 0 dan 1.

Nilai pemulusan periode ke-t bertindak sebagai nilai ramalan pada periode ke-\((T+\tau)\).

\[ \tilde{y}_{T+\tau}(T)=\tilde{y}_T \]

Pemulusan dengan metode SES dapat dilakukan dengan dua fungsi dari packages berbeda, yaitu (1) fungsi ses() dari packages forecast dan (2) fungsi HoltWinters dari packages stats .

#Cara 1 (fungsi ses)
ses.1 <- ses(train.ts, h = 185, alpha = 0.2)
plot(ses.1)

ses.1
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 316       28.22102 27.77763 28.66441 27.54292 28.89913
## 317       28.22102 27.76885 28.67319 27.52949 28.91255
## 318       28.22102 27.76024 28.68180 27.51632 28.92573
## 319       28.22102 27.75178 28.69026 27.50338 28.93866
## 320       28.22102 27.74348 28.69857 27.49068 28.95136
## 321       28.22102 27.73531 28.70673 27.47820 28.96385
## 322       28.22102 27.72729 28.71476 27.46592 28.97613
## 323       28.22102 27.71939 28.72266 27.45383 28.98821
## 324       28.22102 27.71161 28.73044 27.44194 29.00010
## 325       28.22102 27.70395 28.73810 27.43022 29.01182
## 326       28.22102 27.69640 28.74565 27.41868 29.02336
## 327       28.22102 27.68896 28.75309 27.40730 29.03475
## 328       28.22102 27.68162 28.76043 27.39607 29.04597
## 329       28.22102 27.67438 28.76767 27.38500 29.05704
## 330       28.22102 27.66723 28.77481 27.37407 29.06797
## 331       28.22102 27.66017 28.78187 27.36328 29.07876
## 332       28.22102 27.65321 28.78884 27.35262 29.08942
## 333       28.22102 27.64632 28.79572 27.34210 29.09994
## 334       28.22102 27.63952 28.80252 27.33170 29.11035
## 335       28.22102 27.63280 28.80924 27.32142 29.12063
## 336       28.22102 27.62615 28.81589 27.31125 29.13079
## 337       28.22102 27.61958 28.82246 27.30120 29.14085
## 338       28.22102 27.61308 28.82897 27.29125 29.15079
## 339       28.22102 27.60664 28.83540 27.28141 29.16063
## 340       28.22102 27.60028 28.84177 27.27168 29.17037
## 341       28.22102 27.59398 28.84807 27.26204 29.18001
## 342       28.22102 27.58774 28.85431 27.25250 29.18955
## 343       28.22102 27.58156 28.86049 27.24305 29.19900
## 344       28.22102 27.57544 28.86660 27.23369 29.20836
## 345       28.22102 27.56938 28.87267 27.22442 29.21763
## 346       28.22102 27.56337 28.87867 27.21523 29.22681
## 347       28.22102 27.55742 28.88462 27.20613 29.23591
## 348       28.22102 27.55152 28.89052 27.19711 29.24494
## 349       28.22102 27.54567 28.89637 27.18816 29.25388
## 350       28.22102 27.53988 28.90217 27.17930 29.26274
## 351       28.22102 27.53413 28.90792 27.17051 29.27154
## 352       28.22102 27.52843 28.91362 27.16179 29.28025
## 353       28.22102 27.52277 28.91927 27.15314 29.28890
## 354       28.22102 27.51716 28.92488 27.14457 29.29748
## 355       28.22102 27.51160 28.93044 27.13606 29.30599
## 356       28.22102 27.50608 28.93596 27.12761 29.31443
## 357       28.22102 27.50060 28.94144 27.11923 29.32281
## 358       28.22102 27.49516 28.94688 27.11092 29.33113
## 359       28.22102 27.48977 28.95228 27.10266 29.33938
## 360       28.22102 27.48441 28.95763 27.09447 29.34757
## 361       28.22102 27.47909 28.96295 27.08634 29.35571
## 362       28.22102 27.47381 28.96823 27.07826 29.36378
## 363       28.22102 27.46857 28.97348 27.07024 29.37180
## 364       28.22102 27.46336 28.97868 27.06228 29.37977
## 365       28.22102 27.45819 28.98386 27.05437 29.38768
## 366       28.22102 27.45305 28.98899 27.04651 29.39553
## 367       28.22102 27.44795 28.99410 27.03871 29.40334
## 368       28.22102 27.44288 28.99916 27.03095 29.41109
## 369       28.22102 27.43784 29.00420 27.02325 29.41879
## 370       28.22102 27.43284 29.00921 27.01560 29.42645
## 371       28.22102 27.42786 29.01418 27.00799 29.43405
## 372       28.22102 27.42292 29.01912 27.00043 29.44161
## 373       28.22102 27.41801 29.02403 26.99292 29.44912
## 374       28.22102 27.41313 29.02891 26.98546 29.45659
## 375       28.22102 27.40828 29.03377 26.97804 29.46401
## 376       28.22102 27.40345 29.03859 26.97066 29.47138
## 377       28.22102 27.39866 29.04338 26.96333 29.47872
## 378       28.22102 27.39389 29.04815 26.95604 29.48601
## 379       28.22102 27.38915 29.05289 26.94879 29.49326
## 380       28.22102 27.38444 29.05761 26.94158 29.50047
## 381       28.22102 27.37975 29.06229 26.93441 29.50763
## 382       28.22102 27.37509 29.06695 26.92728 29.51476
## 383       28.22102 27.37046 29.07159 26.92019 29.52185
## 384       28.22102 27.36585 29.07620 26.91314 29.52890
## 385       28.22102 27.36126 29.08078 26.90613 29.53591
## 386       28.22102 27.35670 29.08534 26.89915 29.54289
## 387       28.22102 27.35216 29.08988 26.89221 29.54983
## 388       28.22102 27.34765 29.09440 26.88531 29.55673
## 389       28.22102 27.34316 29.09889 26.87844 29.56360
## 390       28.22102 27.33869 29.10335 26.87161 29.57043
## 391       28.22102 27.33425 29.10780 26.86481 29.57723
## 392       28.22102 27.32982 29.11222 26.85805 29.58399
## 393       28.22102 27.32542 29.11662 26.85132 29.59072
## 394       28.22102 27.32104 29.12100 26.84462 29.59742
## 395       28.22102 27.31668 29.12536 26.83796 29.60409
## 396       28.22102 27.31235 29.12970 26.83132 29.61072
## 397       28.22102 27.30803 29.13401 26.82472 29.61732
## 398       28.22102 27.30373 29.13831 26.81815 29.62389
## 399       28.22102 27.29946 29.14259 26.81161 29.63043
## 400       28.22102 27.29520 29.14684 26.80510 29.63694
## 401       28.22102 27.29096 29.15108 26.79862 29.64342
## 402       28.22102 27.28674 29.15530 26.79217 29.64988
## 403       28.22102 27.28255 29.15950 26.78575 29.65630
## 404       28.22102 27.27837 29.16368 26.77935 29.66269
## 405       28.22102 27.27420 29.16784 26.77299 29.66906
## 406       28.22102 27.27006 29.17198 26.76665 29.67539
## 407       28.22102 27.26593 29.17611 26.76034 29.68170
## 408       28.22102 27.26183 29.18022 26.75406 29.68798
## 409       28.22102 27.25774 29.18431 26.74780 29.69424
## 410       28.22102 27.25366 29.18838 26.74157 29.70047
## 411       28.22102 27.24961 29.19244 26.73537 29.70667
## 412       28.22102 27.24557 29.19648 26.72919 29.71285
## 413       28.22102 27.24154 29.20050 26.72304 29.71900
## 414       28.22102 27.23754 29.20450 26.71691 29.72513
## 415       28.22102 27.23355 29.20849 26.71081 29.73123
## 416       28.22102 27.22958 29.21247 26.70474 29.73731
## 417       28.22102 27.22562 29.21643 26.69868 29.74336
## 418       28.22102 27.22168 29.22037 26.69265 29.74939
## 419       28.22102 27.21775 29.22429 26.68665 29.75540
## 420       28.22102 27.21384 29.22821 26.68067 29.76138
## 421       28.22102 27.20994 29.23210 26.67471 29.76734
## 422       28.22102 27.20606 29.23598 26.66877 29.77327
## 423       28.22102 27.20219 29.23985 26.66286 29.77919
## 424       28.22102 27.19834 29.24370 26.65697 29.78508
## 425       28.22102 27.19450 29.24754 26.65110 29.79095
## 426       28.22102 27.19068 29.25136 26.64525 29.79679
## 427       28.22102 27.18687 29.25517 26.63943 29.80262
## 428       28.22102 27.18308 29.25897 26.63362 29.80842
## 429       28.22102 27.17929 29.26275 26.62784 29.81421
## 430       28.22102 27.17553 29.26652 26.62208 29.81997
## 431       28.22102 27.17177 29.27027 26.61633 29.82571
## 432       28.22102 27.16803 29.27401 26.61061 29.83143
## 433       28.22102 27.16431 29.27774 26.60491 29.83713
## 434       28.22102 27.16059 29.28145 26.59923 29.84281
## 435       28.22102 27.15689 29.28515 26.59357 29.84847
## 436       28.22102 27.15320 29.28884 26.58793 29.85411
## 437       28.22102 27.14953 29.29252 26.58231 29.85973
## 438       28.22102 27.14586 29.29618 26.57671 29.86534
## 439       28.22102 27.14221 29.29983 26.57112 29.87092
## 440       28.22102 27.13857 29.30347 26.56556 29.87648
## 441       28.22102 27.13495 29.30710 26.56001 29.88203
## 442       28.22102 27.13133 29.31071 26.55449 29.88756
## 443       28.22102 27.12773 29.31431 26.54898 29.89307
## 444       28.22102 27.12414 29.31790 26.54349 29.89856
## 445       28.22102 27.12056 29.32148 26.53801 29.90403
## 446       28.22102 27.11699 29.32505 26.53256 29.90949
## 447       28.22102 27.11344 29.32861 26.52712 29.91492
## 448       28.22102 27.10989 29.33215 26.52170 29.92035
## 449       28.22102 27.10636 29.33568 26.51629 29.92575
## 450       28.22102 27.10284 29.33920 26.51091 29.93113
## 451       28.22102 27.09933 29.34272 26.50554 29.93650
## 452       28.22102 27.09583 29.34622 26.50019 29.94186
## 453       28.22102 27.09234 29.34970 26.49485 29.94719
## 454       28.22102 27.08886 29.35318 26.48953 29.95251
## 455       28.22102 27.08539 29.35665 26.48423 29.95782
## 456       28.22102 27.08194 29.36011 26.47894 29.96310
## 457       28.22102 27.07849 29.36355 26.47367 29.96837
## 458       28.22102 27.07505 29.36699 26.46841 29.97363
## 459       28.22102 27.07163 29.37042 26.46318 29.97887
## 460       28.22102 27.06821 29.37383 26.45795 29.98409
## 461       28.22102 27.06481 29.37724 26.45274 29.98930
## 462       28.22102 27.06141 29.38063 26.44755 29.99449
## 463       28.22102 27.05803 29.38402 26.44237 29.99967
## 464       28.22102 27.05465 29.38739 26.43721 30.00483
## 465       28.22102 27.05128 29.39076 26.43206 30.00998
## 466       28.22102 27.04793 29.39412 26.42693 30.01512
## 467       28.22102 27.04458 29.39746 26.42181 30.02023
## 468       28.22102 27.04124 29.40080 26.41670 30.02534
## 469       28.22102 27.03791 29.40413 26.41161 30.03043
## 470       28.22102 27.03460 29.40745 26.40654 30.03550
## 471       28.22102 27.03129 29.41076 26.40148 30.04057
## 472       28.22102 27.02799 29.41406 26.39643 30.04561
## 473       28.22102 27.02469 29.41735 26.39140 30.05065
## 474       28.22102 27.02141 29.42063 26.38638 30.05567
## 475       28.22102 27.01814 29.42390 26.38137 30.06067
## 476       28.22102 27.01488 29.42717 26.37638 30.06566
## 477       28.22102 27.01162 29.43042 26.37140 30.07064
## 478       28.22102 27.00837 29.43367 26.36644 30.07561
## 479       28.22102 27.00513 29.43691 26.36148 30.08056
## 480       28.22102 27.00191 29.44014 26.35654 30.08550
## 481       28.22102 26.99868 29.44336 26.35162 30.09043
## 482       28.22102 26.99547 29.44657 26.34671 30.09534
## 483       28.22102 26.99227 29.44978 26.34180 30.10024
## 484       28.22102 26.98907 29.45297 26.33692 30.10513
## 485       28.22102 26.98588 29.45616 26.33204 30.11000
## 486       28.22102 26.98271 29.45934 26.32718 30.11486
## 487       28.22102 26.97953 29.46251 26.32233 30.11971
## 488       28.22102 26.97637 29.46567 26.31749 30.12455
## 489       28.22102 26.97322 29.46883 26.31267 30.12938
## 490       28.22102 26.97007 29.47197 26.30786 30.13419
## 491       28.22102 26.96693 29.47511 26.30305 30.13899
## 492       28.22102 26.96380 29.47824 26.29827 30.14378
## 493       28.22102 26.96068 29.48137 26.29349 30.14856
## 494       28.22102 26.95756 29.48448 26.28872 30.15332
## 495       28.22102 26.95445 29.48759 26.28397 30.15807
## 496       28.22102 26.95135 29.49069 26.27923 30.16282
## 497       28.22102 26.94826 29.49379 26.27450 30.16755
## 498       28.22102 26.94517 29.49687 26.26978 30.17226
## 499       28.22102 26.94209 29.49995 26.26507 30.17697
## 500       28.22102 26.93902 29.50302 26.26037 30.18167
ses.2<- ses(train.ts, h = 185, alpha = 0.7)
plot(ses.2)

ses.2
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 316       27.92831 27.62029 28.23634 27.45723 28.39940
## 317       27.92831 27.55232 28.30431 27.35328 28.50335
## 318       27.92831 27.49488 28.36175 27.26544 28.59119
## 319       27.92831 27.44421 28.41242 27.18794 28.66869
## 320       27.92831 27.39836 28.45826 27.11783 28.73880
## 321       27.92831 27.35618 28.50045 27.05331 28.80332
## 322       27.92831 27.31690 28.53973 26.99323 28.86340
## 323       27.92831 27.27999 28.57664 26.93679 28.91984
## 324       27.92831 27.24508 28.61155 26.88339 28.97324
## 325       27.92831 27.21186 28.64477 26.83259 29.02404
## 326       27.92831 27.18012 28.67651 26.78405 29.07258
## 327       27.92831 27.14967 28.70696 26.73748 29.11915
## 328       27.92831 27.12037 28.73626 26.69267 29.16396
## 329       27.92831 27.09209 28.76454 26.64942 29.20721
## 330       27.92831 27.06474 28.79189 26.60759 29.24904
## 331       27.92831 27.03823 28.81840 26.56704 29.28959
## 332       27.92831 27.01248 28.84415 26.52767 29.32896
## 333       27.92831 26.98744 28.86919 26.48938 29.36725
## 334       27.92831 26.96305 28.89358 26.45208 29.40455
## 335       27.92831 26.93926 28.91737 26.41569 29.44094
## 336       27.92831 26.91603 28.94060 26.38016 29.47646
## 337       27.92831 26.89332 28.96330 26.34543 29.51120
## 338       27.92831 26.87110 28.98553 26.31145 29.54518
## 339       27.92831 26.84934 29.00729 26.27816 29.57846
## 340       27.92831 26.82801 29.02862 26.24554 29.61109
## 341       27.92831 26.80708 29.04955 26.21353 29.64310
## 342       27.92831 26.78653 29.07009 26.18211 29.67452
## 343       27.92831 26.76635 29.09028 26.15125 29.70538
## 344       27.92831 26.74652 29.11011 26.12091 29.73572
## 345       27.92831 26.72701 29.12962 26.09108 29.76555
## 346       27.92831 26.70781 29.14882 26.06172 29.79491
## 347       27.92831 26.68891 29.16772 26.03281 29.82382
## 348       27.92831 26.67030 29.18633 26.00434 29.85229
## 349       27.92831 26.65195 29.20468 25.97629 29.88034
## 350       27.92831 26.63387 29.22276 25.94863 29.90800
## 351       27.92831 26.61603 29.24060 25.92135 29.93528
## 352       27.92831 26.59844 29.25819 25.89444 29.96219
## 353       27.92831 26.58107 29.27556 25.86788 29.98875
## 354       27.92831 26.56392 29.29271 25.84166 30.01497
## 355       27.92831 26.54699 29.30964 25.81576 30.04087
## 356       27.92831 26.53026 29.32636 25.79018 30.06645
## 357       27.92831 26.51374 29.34289 25.76490 30.09173
## 358       27.92831 26.49740 29.35923 25.73991 30.11672
## 359       27.92831 26.48124 29.37539 25.71521 30.14142
## 360       27.92831 26.46527 29.39136 25.69078 30.16585
## 361       27.92831 26.44946 29.40717 25.66661 30.19002
## 362       27.92831 26.43383 29.42280 25.64269 30.21394
## 363       27.92831 26.41835 29.43828 25.61903 30.23760
## 364       27.92831 26.40304 29.45359 25.59560 30.26103
## 365       27.92831 26.38787 29.46876 25.57241 30.28422
## 366       27.92831 26.37285 29.48378 25.54944 30.30719
## 367       27.92831 26.35798 29.49865 25.52669 30.32993
## 368       27.92831 26.34325 29.51338 25.50416 30.35247
## 369       27.92831 26.32865 29.52798 25.48184 30.37479
## 370       27.92831 26.31418 29.54245 25.45971 30.39692
## 371       27.92831 26.29984 29.55679 25.43778 30.41885
## 372       27.92831 26.28563 29.57100 25.41605 30.44058
## 373       27.92831 26.27154 29.58509 25.39450 30.46213
## 374       27.92831 26.25757 29.59906 25.37313 30.48350
## 375       27.92831 26.24371 29.61292 25.35194 30.50469
## 376       27.92831 26.22997 29.62666 25.33092 30.52571
## 377       27.92831 26.21634 29.64029 25.31007 30.54656
## 378       27.92831 26.20281 29.65382 25.28939 30.56724
## 379       27.92831 26.18939 29.66724 25.26886 30.58777
## 380       27.92831 26.17608 29.68055 25.24850 30.60813
## 381       27.92831 26.16286 29.69377 25.22828 30.62835
## 382       27.92831 26.14974 29.70689 25.20822 30.64841
## 383       27.92831 26.13672 29.71991 25.18830 30.66832
## 384       27.92831 26.12379 29.73284 25.16853 30.68810
## 385       27.92831 26.11095 29.74568 25.14890 30.70773
## 386       27.92831 26.09821 29.75842 25.12941 30.72722
## 387       27.92831 26.08555 29.77108 25.11005 30.74658
## 388       27.92831 26.07298 29.78365 25.09082 30.76581
## 389       27.92831 26.06049 29.79614 25.07172 30.78490
## 390       27.92831 26.04809 29.80854 25.05275 30.80388
## 391       27.92831 26.03576 29.82087 25.03391 30.82272
## 392       27.92831 26.02352 29.83311 25.01518 30.84145
## 393       27.92831 26.01136 29.84527 24.99658 30.86005
## 394       27.92831 25.99927 29.85736 24.97809 30.87854
## 395       27.92831 25.98725 29.86938 24.95972 30.89691
## 396       27.92831 25.97532 29.88131 24.94146 30.91517
## 397       27.92831 25.96345 29.89318 24.92331 30.93332
## 398       27.92831 25.95165 29.90498 24.90527 30.95136
## 399       27.92831 25.93993 29.91670 24.88734 30.96929
## 400       27.92831 25.92827 29.92836 24.86951 30.98712
## 401       27.92831 25.91668 29.93995 24.85179 31.00484
## 402       27.92831 25.90516 29.95147 24.83417 31.02246
## 403       27.92831 25.89370 29.96293 24.81664 31.03999
## 404       27.92831 25.88231 29.97432 24.79922 31.05741
## 405       27.92831 25.87098 29.98565 24.78189 31.07474
## 406       27.92831 25.85971 29.99692 24.76466 31.09197
## 407       27.92831 25.84850 30.00813 24.74752 31.10911
## 408       27.92831 25.83736 30.01927 24.73047 31.12616
## 409       27.92831 25.82627 30.03036 24.71351 31.14312
## 410       27.92831 25.81524 30.04139 24.69664 31.15999
## 411       27.92831 25.80427 30.05236 24.67986 31.17677
## 412       27.92831 25.79335 30.06328 24.66317 31.19346
## 413       27.92831 25.78249 30.07414 24.64656 31.21007
## 414       27.92831 25.77168 30.08495 24.63003 31.22660
## 415       27.92831 25.76093 30.09570 24.61359 31.24304
## 416       27.92831 25.75023 30.10640 24.59723 31.25940
## 417       27.92831 25.73959 30.11704 24.58094 31.27569
## 418       27.92831 25.72899 30.12764 24.56474 31.29189
## 419       27.92831 25.71845 30.13818 24.54861 31.30802
## 420       27.92831 25.70795 30.14868 24.53256 31.32406
## 421       27.92831 25.69751 30.15912 24.51659 31.34004
## 422       27.92831 25.68711 30.16952 24.50069 31.35594
## 423       27.92831 25.67676 30.17987 24.48487 31.37176
## 424       27.92831 25.66646 30.19017 24.46911 31.38752
## 425       27.92831 25.65621 30.20042 24.45343 31.40320
## 426       27.92831 25.64600 30.21063 24.43782 31.41881
## 427       27.92831 25.63584 30.22079 24.42228 31.43435
## 428       27.92831 25.62572 30.23091 24.40680 31.44983
## 429       27.92831 25.61565 30.24098 24.39140 31.46523
## 430       27.92831 25.60562 30.25101 24.37606 31.48057
## 431       27.92831 25.59563 30.26100 24.36078 31.49585
## 432       27.92831 25.58569 30.27094 24.34558 31.51105
## 433       27.92831 25.57579 30.28084 24.33043 31.52620
## 434       27.92831 25.56592 30.29070 24.31535 31.54128
## 435       27.92831 25.55611 30.30052 24.30033 31.55630
## 436       27.92831 25.54633 30.31030 24.28538 31.57125
## 437       27.92831 25.53659 30.32004 24.27048 31.58615
## 438       27.92831 25.52689 30.32974 24.25565 31.60098
## 439       27.92831 25.51723 30.33940 24.24087 31.61576
## 440       27.92831 25.50760 30.34902 24.22616 31.63047
## 441       27.92831 25.49802 30.35861 24.21150 31.64513
## 442       27.92831 25.48847 30.36815 24.19690 31.65973
## 443       27.92831 25.47897 30.37766 24.18236 31.67427
## 444       27.92831 25.46949 30.38714 24.16787 31.68876
## 445       27.92831 25.46006 30.39657 24.15344 31.70319
## 446       27.92831 25.45066 30.40597 24.13906 31.71756
## 447       27.92831 25.44129 30.41534 24.12474 31.73189
## 448       27.92831 25.43196 30.42467 24.11048 31.74615
## 449       27.92831 25.42267 30.43396 24.09626 31.76037
## 450       27.92831 25.41341 30.44322 24.08210 31.77453
## 451       27.92831 25.40418 30.45245 24.06799 31.78864
## 452       27.92831 25.39499 30.46164 24.05393 31.80270
## 453       27.92831 25.38583 30.47080 24.03992 31.81671
## 454       27.92831 25.37670 30.47993 24.02596 31.83067
## 455       27.92831 25.36761 30.48902 24.01205 31.84458
## 456       27.92831 25.35855 30.49808 23.99820 31.85843
## 457       27.92831 25.34952 30.50711 23.98439 31.87224
## 458       27.92831 25.34052 30.51611 23.97062 31.88601
## 459       27.92831 25.33155 30.52508 23.95691 31.89972
## 460       27.92831 25.32262 30.53401 23.94324 31.91339
## 461       27.92831 25.31371 30.54292 23.92962 31.92701
## 462       27.92831 25.30483 30.55180 23.91605 31.94058
## 463       27.92831 25.29599 30.56064 23.90252 31.95411
## 464       27.92831 25.28717 30.56946 23.88904 31.96759
## 465       27.92831 25.27839 30.57824 23.87560 31.98103
## 466       27.92831 25.26963 30.58700 23.86220 31.99443
## 467       27.92831 25.26090 30.59573 23.84885 32.00778
## 468       27.92831 25.25220 30.60443 23.83555 32.02108
## 469       27.92831 25.24353 30.61310 23.82228 32.03435
## 470       27.92831 25.23488 30.62175 23.80906 32.04757
## 471       27.92831 25.22626 30.63037 23.79589 32.06074
## 472       27.92831 25.21768 30.63895 23.78275 32.07388
## 473       27.92831 25.20911 30.64752 23.76965 32.08698
## 474       27.92831 25.20058 30.65605 23.75660 32.10003
## 475       27.92831 25.19207 30.66456 23.74359 32.11304
## 476       27.92831 25.18359 30.67304 23.73062 32.12601
## 477       27.92831 25.17513 30.68150 23.71768 32.13895
## 478       27.92831 25.16670 30.68993 23.70479 32.15184
## 479       27.92831 25.15830 30.69833 23.69194 32.16469
## 480       27.92831 25.14992 30.70671 23.67912 32.17751
## 481       27.92831 25.14156 30.71507 23.66634 32.19029
## 482       27.92831 25.13323 30.72340 23.65361 32.20302
## 483       27.92831 25.12493 30.73170 23.64091 32.21572
## 484       27.92831 25.11665 30.73998 23.62824 32.22839
## 485       27.92831 25.10839 30.74824 23.61562 32.24101
## 486       27.92831 25.10016 30.75647 23.60303 32.25360
## 487       27.92831 25.09195 30.76468 23.59048 32.26615
## 488       27.92831 25.08377 30.77286 23.57796 32.27867
## 489       27.92831 25.07561 30.78102 23.56548 32.29115
## 490       27.92831 25.06747 30.78916 23.55303 32.30359
## 491       27.92831 25.05936 30.79727 23.54063 32.31600
## 492       27.92831 25.05127 30.80536 23.52825 32.32838
## 493       27.92831 25.04320 30.81343 23.51591 32.34072
## 494       27.92831 25.03515 30.82148 23.50361 32.35302
## 495       27.92831 25.02713 30.82950 23.49134 32.36529
## 496       27.92831 25.01913 30.83750 23.47910 32.37753
## 497       27.92831 25.01115 30.84548 23.46689 32.38974
## 498       27.92831 25.00319 30.85344 23.45472 32.40191
## 499       27.92831 24.99525 30.86137 23.44259 32.41404
## 500       27.92831 24.98734 30.86929 23.43048 32.42615

Untuk mendapatkan gambar hasil pemulusan pada data latih dengan fungsi ses() , perlu digunakan fungsi autoplot() dan autolayer() dari library packages ggplot2 .

autoplot(ses.1) +
  autolayer(fitted(ses.1), series="Fitted") +
  ylab("Temperature") + xlab("Periode")

Pada fungsi ses() , terdapat beberapa argumen yang umum digunakan, yaitu nilia y , gamma , beta , alpha , dan h .

Nilai y adalah nilai data deret waktu, gamma adalah parameter pemulusan untuk komponen musiman, beta adalah parameter pemulusan untuk tren, dan alpha adalah parameter pemulusan untuk stasioner, serta h adalah banyaknya periode yang akan diramalkan.

Kasus di atas merupakan contoh inisialisasi nilai parameter \(\lambda\) dengan nilai alpha 0,2 dan 0,7 dan banyak periode data yang akan diramalkan adalah sebanyak 185 periode. Selanjutnya akan digunakan fungsi HoltWinters() dengan nilai inisialisasi parameter dan panjang periode peramalan yang sama dengan fungsi ses() .

#Cara 2 (fungsi Holtwinter)
ses1<- HoltWinters(train.ts, gamma = FALSE, beta = FALSE, alpha = 0.2)
plot(ses1)

#ramalan
ramalan1<- forecast(ses1, h=185)
ramalan1
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 316       28.22102 27.77843 28.66361 27.54413 28.89791
## 317       28.22102 27.76966 28.67238 27.53073 28.91131
## 318       28.22102 27.76107 28.68098 27.51758 28.92446
## 319       28.22102 27.75263 28.68942 27.50467 28.93737
## 320       28.22102 27.74433 28.69771 27.49199 28.95005
## 321       28.22102 27.73619 28.70586 27.47953 28.96251
## 322       28.22102 27.72817 28.71387 27.46727 28.97477
## 323       28.22102 27.72029 28.72176 27.45521 28.98683
## 324       28.22102 27.71252 28.72952 27.44334 28.99871
## 325       28.22102 27.70487 28.73717 27.43164 29.01040
## 326       28.22102 27.69734 28.74470 27.42012 29.02193
## 327       28.22102 27.68991 28.75213 27.40876 29.03329
## 328       28.22102 27.68258 28.75946 27.39755 29.04449
## 329       28.22102 27.67536 28.76669 27.38650 29.05554
## 330       28.22102 27.66822 28.77382 27.37559 29.06645
## 331       28.22102 27.66118 28.78086 27.36482 29.07722
## 332       28.22102 27.65423 28.78782 27.35418 29.08786
## 333       28.22102 27.64736 28.79469 27.34368 29.09837
## 334       28.22102 27.64057 28.80148 27.33329 29.10875
## 335       28.22102 27.63386 28.80819 27.32303 29.11901
## 336       28.22102 27.62722 28.81482 27.31288 29.12916
## 337       28.22102 27.62066 28.82138 27.30285 29.13920
## 338       28.22102 27.61417 28.82787 27.29292 29.14912
## 339       28.22102 27.60775 28.83430 27.28310 29.15894
## 340       28.22102 27.60139 28.84065 27.27338 29.16866
## 341       28.22102 27.59510 28.84694 27.26376 29.17828
## 342       28.22102 27.58887 28.85317 27.25423 29.18781
## 343       28.22102 27.58271 28.85934 27.24480 29.19724
## 344       28.22102 27.57660 28.86545 27.23546 29.20658
## 345       28.22102 27.57055 28.87150 27.22620 29.21584
## 346       28.22102 27.56455 28.87749 27.21704 29.22501
## 347       28.22102 27.55861 28.88343 27.20795 29.23409
## 348       28.22102 27.55272 28.88932 27.19894 29.24310
## 349       28.22102 27.54688 28.89516 27.19002 29.25203
## 350       28.22102 27.54110 28.90095 27.18117 29.26088
## 351       28.22102 27.53536 28.90668 27.17239 29.26965
## 352       28.22102 27.52967 28.91237 27.16369 29.27835
## 353       28.22102 27.52403 28.91802 27.15506 29.28698
## 354       28.22102 27.51843 28.92362 27.14650 29.29555
## 355       28.22102 27.51287 28.92917 27.13800 29.30404
## 356       28.22102 27.50736 28.93468 27.12957 29.31247
## 357       28.22102 27.50189 28.94015 27.12121 29.32083
## 358       28.22102 27.49647 28.94558 27.11291 29.32913
## 359       28.22102 27.49108 28.95096 27.10467 29.33737
## 360       28.22102 27.48573 28.95631 27.09649 29.34555
## 361       28.22102 27.48042 28.96162 27.08837 29.35367
## 362       28.22102 27.47515 28.96689 27.08031 29.36173
## 363       28.22102 27.46992 28.97213 27.07231 29.36974
## 364       28.22102 27.46472 28.97732 27.06436 29.37769
## 365       28.22102 27.45956 28.98249 27.05646 29.38558
## 366       28.22102 27.45443 28.98761 27.04862 29.39342
## 367       28.22102 27.44933 28.99271 27.04083 29.40121
## 368       28.22102 27.44427 28.99777 27.03309 29.40895
## 369       28.22102 27.43925 29.00280 27.02540 29.41664
## 370       28.22102 27.43425 29.00779 27.01776 29.42428
## 371       28.22102 27.42929 29.01276 27.01017 29.43187
## 372       28.22102 27.42435 29.01769 27.00262 29.43942
## 373       28.22102 27.41945 29.02259 26.99513 29.44692
## 374       28.22102 27.41458 29.02746 26.98767 29.45437
## 375       28.22102 27.40974 29.03231 26.98027 29.46178
## 376       28.22102 27.40492 29.03712 26.97290 29.46914
## 377       28.22102 27.40013 29.04191 26.96558 29.47646
## 378       28.22102 27.39538 29.04667 26.95830 29.48374
## 379       28.22102 27.39064 29.05140 26.95107 29.49097
## 380       28.22102 27.38594 29.05610 26.94387 29.49817
## 381       28.22102 27.38126 29.06078 26.93672 29.50532
## 382       28.22102 27.37661 29.06543 26.92960 29.51244
## 383       28.22102 27.37198 29.07006 26.92253 29.51952
## 384       28.22102 27.36738 29.07466 26.91549 29.52655
## 385       28.22102 27.36280 29.07924 26.90849 29.53355
## 386       28.22102 27.35825 29.08379 26.90153 29.54052
## 387       28.22102 27.35372 29.08832 26.89460 29.54744
## 388       28.22102 27.34921 29.09283 26.88771 29.55433
## 389       28.22102 27.34473 29.09731 26.88085 29.56119
## 390       28.22102 27.34027 29.10177 26.87403 29.56801
## 391       28.22102 27.33584 29.10621 26.86725 29.57480
## 392       28.22102 27.33142 29.11062 26.86050 29.58155
## 393       28.22102 27.32703 29.11502 26.85378 29.58827
## 394       28.22102 27.32266 29.11939 26.84709 29.59495
## 395       28.22102 27.31831 29.12374 26.84044 29.60161
## 396       28.22102 27.31398 29.12807 26.83382 29.60823
## 397       28.22102 27.30967 29.13238 26.82723 29.61482
## 398       28.22102 27.30538 29.13666 26.82067 29.62138
## 399       28.22102 27.30111 29.14093 26.81414 29.62791
## 400       28.22102 27.29686 29.14518 26.80764 29.63440
## 401       28.22102 27.29263 29.14941 26.80117 29.64087
## 402       28.22102 27.28842 29.15362 26.79473 29.64731
## 403       28.22102 27.28423 29.15781 26.78832 29.65372
## 404       28.22102 27.28006 29.16199 26.78194 29.66010
## 405       28.22102 27.27590 29.16614 26.77559 29.66646
## 406       28.22102 27.27177 29.17028 26.76926 29.67278
## 407       28.22102 27.26765 29.17440 26.76296 29.67908
## 408       28.22102 27.26355 29.17850 26.75669 29.68535
## 409       28.22102 27.25946 29.18258 26.75045 29.69160
## 410       28.22102 27.25540 29.18665 26.74423 29.69782
## 411       28.22102 27.25135 29.19069 26.73804 29.70401
## 412       28.22102 27.24732 29.19473 26.73187 29.71017
## 413       28.22102 27.24330 29.19874 26.72573 29.71631
## 414       28.22102 27.23930 29.20274 26.71961 29.72243
## 415       28.22102 27.23532 29.20672 26.71352 29.72852
## 416       28.22102 27.23135 29.21069 26.70746 29.73459
## 417       28.22102 27.22740 29.21464 26.70141 29.74063
## 418       28.22102 27.22347 29.21858 26.69540 29.74665
## 419       28.22102 27.21955 29.22249 26.68940 29.75264
## 420       28.22102 27.21564 29.22640 26.68343 29.75861
## 421       28.22102 27.21175 29.23029 26.67748 29.76456
## 422       28.22102 27.20788 29.23416 26.67156 29.77049
## 423       28.22102 27.20402 29.23802 26.66565 29.77639
## 424       28.22102 27.20018 29.24187 26.65977 29.78227
## 425       28.22102 27.19635 29.24570 26.65391 29.78813
## 426       28.22102 27.19253 29.24951 26.64808 29.79397
## 427       28.22102 27.18873 29.25332 26.64226 29.79978
## 428       28.22102 27.18494 29.25710 26.63647 29.80557
## 429       28.22102 27.18116 29.26088 26.63070 29.81135
## 430       28.22102 27.17740 29.26464 26.62494 29.81710
## 431       28.22102 27.17366 29.26839 26.61921 29.82283
## 432       28.22102 27.16992 29.27212 26.61350 29.82854
## 433       28.22102 27.16620 29.27584 26.60781 29.83423
## 434       28.22102 27.16249 29.27955 26.60214 29.83990
## 435       28.22102 27.15880 29.28324 26.59649 29.84555
## 436       28.22102 27.15512 29.28693 26.59086 29.85118
## 437       28.22102 27.15145 29.29060 26.58525 29.85679
## 438       28.22102 27.14779 29.29425 26.57966 29.86239
## 439       28.22102 27.14415 29.29790 26.57408 29.86796
## 440       28.22102 27.14051 29.30153 26.56853 29.87351
## 441       28.22102 27.13690 29.30515 26.56299 29.87905
## 442       28.22102 27.13329 29.30876 26.55748 29.88457
## 443       28.22102 27.12969 29.31235 26.55198 29.89007
## 444       28.22102 27.12611 29.31594 26.54649 29.89555
## 445       28.22102 27.12254 29.31951 26.54103 29.90101
## 446       28.22102 27.11897 29.32307 26.53559 29.90646
## 447       28.22102 27.11543 29.32662 26.53016 29.91189
## 448       28.22102 27.11189 29.33016 26.52475 29.91730
## 449       28.22102 27.10836 29.33368 26.51935 29.92269
## 450       28.22102 27.10485 29.33720 26.51398 29.92807
## 451       28.22102 27.10134 29.34070 26.50862 29.93343
## 452       28.22102 27.09785 29.34420 26.50327 29.93877
## 453       28.22102 27.09436 29.34768 26.49795 29.94410
## 454       28.22102 27.09089 29.35115 26.49264 29.94941
## 455       28.22102 27.08743 29.35461 26.48734 29.95470
## 456       28.22102 27.08398 29.35806 26.48207 29.95998
## 457       28.22102 27.08054 29.36150 26.47681 29.96524
## 458       28.22102 27.07711 29.36493 26.47156 29.97048
## 459       28.22102 27.07369 29.36835 26.46633 29.97571
## 460       28.22102 27.07028 29.37176 26.46111 29.98093
## 461       28.22102 27.06688 29.37516 26.45592 29.98613
## 462       28.22102 27.06349 29.37855 26.45073 29.99131
## 463       28.22102 27.06011 29.38193 26.44556 29.99648
## 464       28.22102 27.05674 29.38530 26.44041 30.00163
## 465       28.22102 27.05338 29.38866 26.43527 30.00677
## 466       28.22102 27.05003 29.39201 26.43015 30.01190
## 467       28.22102 27.04669 29.39535 26.42504 30.01701
## 468       28.22102 27.04336 29.39868 26.41994 30.02210
## 469       28.22102 27.04004 29.40201 26.41486 30.02718
## 470       28.22102 27.03672 29.40532 26.40979 30.03225
## 471       28.22102 27.03342 29.40862 26.40474 30.03730
## 472       28.22102 27.03013 29.41192 26.39970 30.04234
## 473       28.22102 27.02684 29.41520 26.39468 30.04736
## 474       28.22102 27.02356 29.41848 26.38967 30.05237
## 475       28.22102 27.02030 29.42175 26.38467 30.05737
## 476       28.22102 27.01704 29.42500 26.37969 30.06235
## 477       28.22102 27.01379 29.42825 26.37472 30.06732
## 478       28.22102 27.01055 29.43149 26.36976 30.07228
## 479       28.22102 27.00732 29.43473 26.36482 30.07722
## 480       28.22102 27.00409 29.43795 26.35989 30.08215
## 481       28.22102 27.00088 29.44117 26.35497 30.08707
## 482       28.22102 26.99767 29.44437 26.35007 30.09198
## 483       28.22102 26.99447 29.44757 26.34518 30.09687
## 484       28.22102 26.99128 29.45076 26.34030 30.10175
## 485       28.22102 26.98810 29.45394 26.33543 30.10661
## 486       28.22102 26.98493 29.45712 26.33058 30.11146
## 487       28.22102 26.98176 29.46028 26.32574 30.11631
## 488       28.22102 26.97860 29.46344 26.32091 30.12113
## 489       28.22102 26.97546 29.46659 26.31609 30.12595
## 490       28.22102 26.97231 29.46973 26.31129 30.13076
## 491       28.22102 26.96918 29.47286 26.30650 30.13555
## 492       28.22102 26.96605 29.47599 26.30171 30.14033
## 493       28.22102 26.96294 29.47911 26.29695 30.14510
## 494       28.22102 26.95983 29.48222 26.29219 30.14985
## 495       28.22102 26.95672 29.48532 26.28744 30.15460
## 496       28.22102 26.95363 29.48841 26.28271 30.15933
## 497       28.22102 26.95054 29.49150 26.27799 30.16405
## 498       28.22102 26.94746 29.49458 26.27328 30.16876
## 499       28.22102 26.94439 29.49765 26.26858 30.17346
## 500       28.22102 26.94132 29.50072 26.26389 30.17815
ses2<- HoltWinters(train.ts, gamma = FALSE, beta = FALSE, alpha = 0.7)
plot(ses2)

#ramalan
ramalan2<- forecast(ses2, h=185)
ramalan2
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 316       27.92831 27.62036 28.23627 27.45733 28.39930
## 317       27.92831 27.55240 28.30423 27.35341 28.50322
## 318       27.92831 27.49498 28.36165 27.26558 28.59105
## 319       27.92831 27.44432 28.41231 27.18811 28.66852
## 320       27.92831 27.39848 28.45815 27.11801 28.73862
## 321       27.92831 27.35631 28.50032 27.05350 28.80313
## 322       27.92831 27.31703 28.53960 26.99344 28.86319
## 323       27.92831 27.28014 28.57649 26.93701 28.91962
## 324       27.92831 27.24523 28.61140 26.88363 28.97300
## 325       27.92831 27.21202 28.64461 26.83284 29.02379
## 326       27.92831 27.18029 28.67634 26.78430 29.07233
## 327       27.92831 27.14984 28.70679 26.73774 29.11888
## 328       27.92831 27.12055 28.73608 26.69294 29.16369
## 329       27.92831 27.09228 28.76435 26.64970 29.20693
## 330       27.92831 27.06493 28.79170 26.60788 29.24875
## 331       27.92831 27.03843 28.81820 26.56735 29.28928
## 332       27.92831 27.01269 28.84394 26.52798 29.32865
## 333       27.92831 26.98765 28.86898 26.48970 29.36693
## 334       27.92831 26.96327 28.89336 26.45240 29.40423
## 335       27.92831 26.93948 28.91715 26.41603 29.44060
## 336       27.92831 26.91626 28.94037 26.38051 29.47612
## 337       27.92831 26.89356 28.96307 26.34579 29.51084
## 338       27.92831 26.87134 28.98529 26.31181 29.54482
## 339       27.92831 26.84958 29.00705 26.27853 29.57810
## 340       27.92831 26.82825 29.02838 26.24591 29.61072
## 341       27.92831 26.80733 29.04930 26.21391 29.64272
## 342       27.92831 26.78679 29.06984 26.18250 29.67413
## 343       27.92831 26.76661 29.09002 26.15164 29.70499
## 344       27.92831 26.74678 29.10985 26.12131 29.73532
## 345       27.92831 26.72728 29.12935 26.09148 29.76515
## 346       27.92831 26.70808 29.14855 26.06213 29.79450
## 347       27.92831 26.68919 29.16744 26.03323 29.82340
## 348       27.92831 26.67058 29.18605 26.00477 29.85186
## 349       27.92831 26.65224 29.20439 25.97672 29.87991
## 350       27.92831 26.63416 29.22247 25.94907 29.90756
## 351       27.92831 26.61632 29.24031 25.92180 29.93483
## 352       27.92831 26.59873 29.25790 25.89489 29.96174
## 353       27.92831 26.58137 29.27526 25.86834 29.98829
## 354       27.92831 26.56423 29.29240 25.84212 30.01451
## 355       27.92831 26.54730 29.30933 25.81623 30.04040
## 356       27.92831 26.53058 29.32605 25.79066 30.06597
## 357       27.92831 26.51405 29.34258 25.76538 30.09125
## 358       27.92831 26.49771 29.35891 25.74040 30.11623
## 359       27.92831 26.48156 29.37507 25.71570 30.14093
## 360       27.92831 26.46559 29.39104 25.69127 30.16536
## 361       27.92831 26.44979 29.40684 25.66711 30.18952
## 362       27.92831 26.43416 29.42247 25.64320 30.21343
## 363       27.92831 26.41869 29.43794 25.61954 30.23709
## 364       27.92831 26.40337 29.45325 25.59612 30.26051
## 365       27.92831 26.38821 29.46842 25.57293 30.28370
## 366       27.92831 26.37320 29.48343 25.54997 30.30666
## 367       27.92831 26.35833 29.49830 25.52723 30.32940
## 368       27.92831 26.34360 29.51303 25.50470 30.35193
## 369       27.92831 26.32900 29.52763 25.48238 30.37425
## 370       27.92831 26.31454 29.54209 25.46026 30.39637
## 371       27.92831 26.30021 29.55642 25.43834 30.41829
## 372       27.92831 26.28600 29.57063 25.41661 30.44002
## 373       27.92831 26.27191 29.58472 25.39506 30.46157
## 374       27.92831 26.25794 29.59869 25.37370 30.48293
## 375       27.92831 26.24409 29.61254 25.35251 30.50412
## 376       27.92831 26.23035 29.62628 25.33150 30.52513
## 377       27.92831 26.21672 29.63991 25.31065 30.54598
## 378       27.92831 26.20320 29.65343 25.28997 30.56666
## 379       27.92831 26.18978 29.66685 25.26945 30.58718
## 380       27.92831 26.17647 29.68016 25.24909 30.60754
## 381       27.92831 26.16325 29.69338 25.22888 30.62775
## 382       27.92831 26.15014 29.70649 25.20883 30.64780
## 383       27.92831 26.13712 29.71951 25.18891 30.66772
## 384       27.92831 26.12419 29.73244 25.16915 30.68748
## 385       27.92831 26.11136 29.74527 25.14952 30.70711
## 386       27.92831 26.09861 29.75801 25.13003 30.72660
## 387       27.92831 26.08596 29.77067 25.11068 30.74595
## 388       27.92831 26.07339 29.78324 25.09145 30.76518
## 389       27.92831 26.06091 29.79572 25.07236 30.78427
## 390       27.92831 26.04850 29.80812 25.05339 30.80324
## 391       27.92831 26.03618 29.82044 25.03455 30.82208
## 392       27.92831 26.02394 29.83269 25.01583 30.84080
## 393       27.92831 26.01178 29.84485 24.99723 30.85940
## 394       27.92831 25.99970 29.85693 24.97875 30.87788
## 395       27.92831 25.98769 29.86894 24.96038 30.89625
## 396       27.92831 25.97575 29.88088 24.94212 30.91451
## 397       27.92831 25.96389 29.89274 24.92398 30.93265
## 398       27.92831 25.95209 29.90454 24.90594 30.95069
## 399       27.92831 25.94037 29.91626 24.88802 30.96861
## 400       27.92831 25.92872 29.92791 24.87019 30.98644
## 401       27.92831 25.91713 29.93950 24.85247 31.00416
## 402       27.92831 25.90561 29.95102 24.83485 31.02178
## 403       27.92831 25.89415 29.96247 24.81734 31.03929
## 404       27.92831 25.88276 29.97387 24.79991 31.05671
## 405       27.92831 25.87144 29.98519 24.78259 31.07404
## 406       27.92831 25.86017 29.99646 24.76536 31.09127
## 407       27.92831 25.84897 30.00766 24.74823 31.10840
## 408       27.92831 25.83782 30.01881 24.73118 31.12545
## 409       27.92831 25.82674 30.02989 24.71423 31.14240
## 410       27.92831 25.81571 30.04092 24.69736 31.15927
## 411       27.92831 25.80474 30.05189 24.68059 31.17604
## 412       27.92831 25.79383 30.06280 24.66390 31.19273
## 413       27.92831 25.78297 30.07366 24.64729 31.20934
## 414       27.92831 25.77216 30.08447 24.63077 31.22586
## 415       27.92831 25.76141 30.09522 24.61433 31.24230
## 416       27.92831 25.75072 30.10591 24.59797 31.25866
## 417       27.92831 25.74007 30.11656 24.58169 31.27494
## 418       27.92831 25.72948 30.12715 24.56549 31.29114
## 419       27.92831 25.71894 30.13769 24.54937 31.30726
## 420       27.92831 25.70845 30.14818 24.53332 31.32331
## 421       27.92831 25.69800 30.15862 24.51735 31.33928
## 422       27.92831 25.68761 30.16902 24.50145 31.35518
## 423       27.92831 25.67727 30.17936 24.48563 31.37100
## 424       27.92831 25.66697 30.18966 24.46988 31.38675
## 425       27.92831 25.65671 30.19991 24.45420 31.40243
## 426       27.92831 25.64651 30.21012 24.43859 31.41804
## 427       27.92831 25.63635 30.22028 24.42306 31.43357
## 428       27.92831 25.62623 30.23040 24.40758 31.44904
## 429       27.92831 25.61616 30.24047 24.39218 31.46445
## 430       27.92831 25.60613 30.25049 24.37685 31.47978
## 431       27.92831 25.59615 30.26048 24.36158 31.49505
## 432       27.92831 25.58621 30.27042 24.34637 31.51026
## 433       27.92831 25.57631 30.28032 24.33123 31.52540
## 434       27.92831 25.56645 30.29018 24.31615 31.54047
## 435       27.92831 25.55663 30.30000 24.30114 31.55549
## 436       27.92831 25.54686 30.30977 24.28619 31.57044
## 437       27.92831 25.53712 30.31951 24.27130 31.58533
## 438       27.92831 25.52742 30.32921 24.25647 31.60016
## 439       27.92831 25.51776 30.33887 24.24169 31.61494
## 440       27.92831 25.50814 30.34849 24.22698 31.62965
## 441       27.92831 25.49856 30.35807 24.21233 31.64430
## 442       27.92831 25.48902 30.36761 24.19773 31.65890
## 443       27.92831 25.47951 30.37712 24.18319 31.67344
## 444       27.92831 25.47004 30.38659 24.16871 31.68792
## 445       27.92831 25.46061 30.39602 24.15428 31.70235
## 446       27.92831 25.45121 30.40542 24.13991 31.71672
## 447       27.92831 25.44185 30.41478 24.12559 31.73104
## 448       27.92831 25.43252 30.42411 24.11132 31.74531
## 449       27.92831 25.42323 30.43340 24.09711 31.75952
## 450       27.92831 25.41397 30.44266 24.08295 31.77368
## 451       27.92831 25.40474 30.45189 24.06885 31.78778
## 452       27.92831 25.39555 30.46108 24.05479 31.80184
## 453       27.92831 25.38640 30.47023 24.04079 31.81584
## 454       27.92831 25.37727 30.47936 24.02683 31.82980
## 455       27.92831 25.36818 30.48845 24.01293 31.84370
## 456       27.92831 25.35912 30.49751 23.99907 31.85756
## 457       27.92831 25.35009 30.50654 23.98526 31.87137
## 458       27.92831 25.34110 30.51553 23.97150 31.88513
## 459       27.92831 25.33213 30.52450 23.95779 31.89884
## 460       27.92831 25.32320 30.53343 23.94413 31.91250
## 461       27.92831 25.31429 30.54234 23.93051 31.92612
## 462       27.92831 25.30542 30.55121 23.91694 31.93969
## 463       27.92831 25.29657 30.56006 23.90341 31.95322
## 464       27.92831 25.28776 30.56887 23.88993 31.96670
## 465       27.92831 25.27897 30.57765 23.87650 31.98013
## 466       27.92831 25.27022 30.58641 23.86311 31.99352
## 467       27.92831 25.26149 30.59514 23.84976 32.00687
## 468       27.92831 25.25279 30.60384 23.83646 32.02017
## 469       27.92831 25.24412 30.61251 23.82320 32.03343
## 470       27.92831 25.23548 30.62115 23.80998 32.04665
## 471       27.92831 25.22687 30.62976 23.79680 32.05982
## 472       27.92831 25.21828 30.63835 23.78367 32.07296
## 473       27.92831 25.20972 30.64691 23.77058 32.08605
## 474       27.92831 25.20118 30.65545 23.75753 32.09910
## 475       27.92831 25.19268 30.66395 23.74452 32.11211
## 476       27.92831 25.18420 30.67243 23.73155 32.12508
## 477       27.92831 25.17574 30.68089 23.71862 32.13801
## 478       27.92831 25.16731 30.68932 23.70573 32.15090
## 479       27.92831 25.15891 30.69772 23.69288 32.16375
## 480       27.92831 25.15053 30.70610 23.68007 32.17656
## 481       27.92831 25.14218 30.71445 23.66729 32.18934
## 482       27.92831 25.13385 30.72277 23.65456 32.20207
## 483       27.92831 25.12555 30.73108 23.64186 32.21477
## 484       27.92831 25.11727 30.73936 23.62920 32.22743
## 485       27.92831 25.10902 30.74761 23.61658 32.24005
## 486       27.92831 25.10079 30.75584 23.60399 32.25264
## 487       27.92831 25.09259 30.76404 23.59144 32.26519
## 488       27.92831 25.08440 30.77223 23.57893 32.27770
## 489       27.92831 25.07624 30.78038 23.56645 32.29018
## 490       27.92831 25.06811 30.78852 23.55401 32.30262
## 491       27.92831 25.06000 30.79663 23.54160 32.31503
## 492       27.92831 25.05191 30.80472 23.52923 32.32740
## 493       27.92831 25.04384 30.81279 23.51689 32.33974
## 494       27.92831 25.03580 30.82083 23.50459 32.35204
## 495       27.92831 25.02778 30.82885 23.49232 32.36431
## 496       27.92831 25.01978 30.83685 23.48009 32.37654
## 497       27.92831 25.01180 30.84483 23.46789 32.38874
## 498       27.92831 25.00384 30.85279 23.45572 32.40091
## 499       27.92831 24.99591 30.86072 23.44358 32.41304
## 500       27.92831 24.98799 30.86864 23.43148 32.42515

Nilai parameter \(\alpha\) dari kedua fungsi dapat dioptimalkan menyesuaikan dari error-nya paling minimumnya. Caranya adalah dengan membuat parameter \(\alpha =\) NULL .

#SES
ses.opt <- ses(train.ts, h = 185, alpha = NULL)
plot(ses.opt)

ses.opt
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 316        27.8931 27.59752 28.18868 27.44105 28.34515
## 317        27.8931 27.47511 28.31109 27.25383 28.53237
## 318        27.8931 27.38117 28.40503 27.11017 28.67602
## 319        27.8931 27.30198 28.48422 26.98906 28.79714
## 320        27.8931 27.23221 28.55399 26.88236 28.90384
## 321        27.8931 27.16914 28.61706 26.78590 29.00030
## 322        27.8931 27.11113 28.67507 26.69719 29.08901
## 323        27.8931 27.05714 28.72906 26.61462 29.17158
## 324        27.8931 27.00644 28.77976 26.53707 29.24913
## 325        27.8931 26.95848 28.82772 26.46372 29.32248
## 326        27.8931 26.91286 28.87334 26.39395 29.39225
## 327        27.8931 26.86927 28.91693 26.32729 29.45891
## 328        27.8931 26.82747 28.95873 26.26335 29.52284
## 329        27.8931 26.78724 28.99896 26.20183 29.58437
## 330        27.8931 26.74843 29.03777 26.14247 29.64372
## 331        27.8931 26.71089 29.07531 26.08506 29.70114
## 332        27.8931 26.67450 29.11170 26.02942 29.75678
## 333        27.8931 26.63918 29.14702 25.97539 29.81081
## 334        27.8931 26.60482 29.18138 25.92284 29.86336
## 335        27.8931 26.57135 29.21485 25.87166 29.91454
## 336        27.8931 26.53871 29.24749 25.82174 29.96446
## 337        27.8931 26.50684 29.27936 25.77299 30.01321
## 338        27.8931 26.47568 29.31052 25.72534 30.06086
## 339        27.8931 26.44519 29.34100 25.67872 30.10748
## 340        27.8931 26.41534 29.37086 25.63306 30.15314
## 341        27.8931 26.38607 29.40013 25.58830 30.19790
## 342        27.8931 26.35737 29.42883 25.54440 30.24180
## 343        27.8931 26.32918 29.45701 25.50130 30.28490
## 344        27.8931 26.30150 29.48470 25.45896 30.32724
## 345        27.8931 26.27429 29.51191 25.41735 30.36885
## 346        27.8931 26.24754 29.53866 25.37643 30.40977
## 347        27.8931 26.22120 29.56499 25.33616 30.45004
## 348        27.8931 26.19528 29.59092 25.29651 30.48969
## 349        27.8931 26.16975 29.61645 25.25746 30.52874
## 350        27.8931 26.14459 29.64161 25.21899 30.56721
## 351        27.8931 26.11979 29.66641 25.18105 30.60515
## 352        27.8931 26.09533 29.69087 25.14364 30.64255
## 353        27.8931 26.07120 29.71500 25.10674 30.67946
## 354        27.8931 26.04738 29.73882 25.07031 30.71589
## 355        27.8931 26.02387 29.76233 25.03435 30.75185
## 356        27.8931 26.00064 29.78555 24.99884 30.78736
## 357        27.8931 25.97770 29.80849 24.96376 30.82244
## 358        27.8931 25.95504 29.83116 24.92909 30.85711
## 359        27.8931 25.93263 29.85357 24.89482 30.89138
## 360        27.8931 25.91048 29.87572 24.86094 30.92526
## 361        27.8931 25.88857 29.89763 24.82744 30.95876
## 362        27.8931 25.86690 29.91930 24.79429 30.99191
## 363        27.8931 25.84546 29.94074 24.76150 31.02470
## 364        27.8931 25.82424 29.96196 24.72905 31.05715
## 365        27.8931 25.80323 29.98297 24.69693 31.08927
## 366        27.8931 25.78244 30.00376 24.66512 31.12108
## 367        27.8931 25.76185 30.02435 24.63363 31.15257
## 368        27.8931 25.74145 30.04475 24.60244 31.18376
## 369        27.8931 25.72125 30.06495 24.57154 31.21466
## 370        27.8931 25.70123 30.08497 24.54092 31.24528
## 371        27.8931 25.68139 30.10481 24.51059 31.27561
## 372        27.8931 25.66173 30.12447 24.48052 31.30568
## 373        27.8931 25.64225 30.14395 24.45072 31.33548
## 374        27.8931 25.62292 30.16327 24.42117 31.36503
## 375        27.8931 25.60377 30.18243 24.39187 31.39433
## 376        27.8931 25.58477 30.20143 24.36281 31.42339
## 377        27.8931 25.56592 30.22028 24.33399 31.45221
## 378        27.8931 25.54723 30.23897 24.30540 31.48080
## 379        27.8931 25.52869 30.25751 24.27704 31.50916
## 380        27.8931 25.51029 30.27591 24.24890 31.53730
## 381        27.8931 25.49203 30.29417 24.22098 31.56522
## 382        27.8931 25.47391 30.31229 24.19326 31.59294
## 383        27.8931 25.45592 30.33028 24.16575 31.62045
## 384        27.8931 25.43806 30.34814 24.13845 31.64775
## 385        27.8931 25.42034 30.36586 24.11134 31.67486
## 386        27.8931 25.40274 30.38346 24.08442 31.70178
## 387        27.8931 25.38526 30.40094 24.05769 31.72851
## 388        27.8931 25.36791 30.41829 24.03115 31.75505
## 389        27.8931 25.35067 30.43553 24.00479 31.78141
## 390        27.8931 25.33355 30.45265 23.97860 31.80760
## 391        27.8931 25.31654 30.46966 23.95259 31.83361
## 392        27.8931 25.29965 30.48655 23.92675 31.85945
## 393        27.8931 25.28286 30.50334 23.90108 31.88512
## 394        27.8931 25.26618 30.52002 23.87557 31.91063
## 395        27.8931 25.24961 30.53659 23.85023 31.93597
## 396        27.8931 25.23314 30.55306 23.82504 31.96116
## 397        27.8931 25.21677 30.56943 23.80000 31.98620
## 398        27.8931 25.20050 30.58570 23.77512 32.01108
## 399        27.8931 25.18433 30.60187 23.75039 32.03581
## 400        27.8931 25.16825 30.61795 23.72580 32.06040
## 401        27.8931 25.15227 30.63393 23.70136 32.08484
## 402        27.8931 25.13638 30.64982 23.67706 32.10914
## 403        27.8931 25.12058 30.66562 23.65290 32.13330
## 404        27.8931 25.10487 30.68133 23.62887 32.15732
## 405        27.8931 25.08925 30.69695 23.60499 32.18121
## 406        27.8931 25.07372 30.71248 23.58123 32.20497
## 407        27.8931 25.05827 30.72793 23.55760 32.22860
## 408        27.8931 25.04290 30.74329 23.53410 32.25210
## 409        27.8931 25.02762 30.75858 23.51073 32.27547
## 410        27.8931 25.01242 30.77378 23.48748 32.29872
## 411        27.8931 24.99730 30.78890 23.46435 32.32184
## 412        27.8931 24.98226 30.80394 23.44135 32.34485
## 413        27.8931 24.96729 30.81891 23.41846 32.36774
## 414        27.8931 24.95240 30.83380 23.39569 32.39051
## 415        27.8931 24.93759 30.84861 23.37303 32.41317
## 416        27.8931 24.92284 30.86335 23.35049 32.43571
## 417        27.8931 24.90818 30.87802 23.32805 32.45815
## 418        27.8931 24.89358 30.89262 23.30573 32.48047
## 419        27.8931 24.87906 30.90714 23.28352 32.50268
## 420        27.8931 24.86460 30.92160 23.26141 32.52479
## 421        27.8931 24.85021 30.93599 23.23940 32.54679
## 422        27.8931 24.83589 30.95031 23.21750 32.56869
## 423        27.8931 24.82164 30.96456 23.19571 32.59049
## 424        27.8931 24.80745 30.97875 23.17401 32.61219
## 425        27.8931 24.79333 30.99287 23.15241 32.63379
## 426        27.8931 24.77927 31.00693 23.13091 32.65529
## 427        27.8931 24.76528 31.02092 23.10951 32.67669
## 428        27.8931 24.75135 31.03485 23.08820 32.69800
## 429        27.8931 24.73747 31.04872 23.06699 32.71921
## 430        27.8931 24.72366 31.06253 23.04587 32.74033
## 431        27.8931 24.70991 31.07629 23.02484 32.76136
## 432        27.8931 24.69622 31.08998 23.00390 32.78230
## 433        27.8931 24.68259 31.10361 22.98305 32.80315
## 434        27.8931 24.66901 31.11718 22.96229 32.82391
## 435        27.8931 24.65550 31.13070 22.94161 32.84459
## 436        27.8931 24.64203 31.14416 22.92102 32.86517
## 437        27.8931 24.62863 31.15757 22.90052 32.88568
## 438        27.8931 24.61528 31.17092 22.88010 32.90610
## 439        27.8931 24.60198 31.18422 22.85977 32.92643
## 440        27.8931 24.58874 31.19746 22.83951 32.94669
## 441        27.8931 24.57554 31.21066 22.81934 32.96686
## 442        27.8931 24.56241 31.22379 22.79924 32.98696
## 443        27.8931 24.54932 31.23688 22.77923 33.00697
## 444        27.8931 24.53628 31.24992 22.75929 33.02691
## 445        27.8931 24.52330 31.26290 22.73943 33.04677
## 446        27.8931 24.51036 31.27584 22.71965 33.06655
## 447        27.8931 24.49747 31.28873 22.69994 33.08626
## 448        27.8931 24.48464 31.30156 22.68030 33.10590
## 449        27.8931 24.47185 31.31435 22.66074 33.12546
## 450        27.8931 24.45910 31.32710 22.64126 33.14494
## 451        27.8931 24.44641 31.33979 22.62184 33.16436
## 452        27.8931 24.43376 31.35244 22.60250 33.18370
## 453        27.8931 24.42116 31.36504 22.58322 33.20298
## 454        27.8931 24.40860 31.37760 22.56402 33.22218
## 455        27.8931 24.39609 31.39011 22.54488 33.24132
## 456        27.8931 24.38362 31.40258 22.52582 33.26038
## 457        27.8931 24.37120 31.41500 22.50682 33.27938
## 458        27.8931 24.35882 31.42738 22.48789 33.29831
## 459        27.8931 24.34648 31.43972 22.46902 33.31718
## 460        27.8931 24.33419 31.45201 22.45022 33.33598
## 461        27.8931 24.32194 31.46426 22.43148 33.35472
## 462        27.8931 24.30973 31.47647 22.41281 33.37339
## 463        27.8931 24.29756 31.48864 22.39420 33.39200
## 464        27.8931 24.28544 31.50076 22.37565 33.41054
## 465        27.8931 24.27335 31.51285 22.35717 33.42903
## 466        27.8931 24.26130 31.52489 22.33875 33.44745
## 467        27.8931 24.24930 31.53690 22.32039 33.46581
## 468        27.8931 24.23733 31.54887 22.30209 33.48411
## 469        27.8931 24.22540 31.56079 22.28384 33.50236
## 470        27.8931 24.21352 31.57268 22.26566 33.52054
## 471        27.8931 24.20167 31.58453 22.24754 33.53866
## 472        27.8931 24.18985 31.59635 22.22947 33.55673
## 473        27.8931 24.17808 31.60812 22.21146 33.57474
## 474        27.8931 24.16634 31.61986 22.19351 33.59269
## 475        27.8931 24.15464 31.63156 22.17562 33.61058
## 476        27.8931 24.14297 31.64323 22.15778 33.62842
## 477        27.8931 24.13135 31.65485 22.13999 33.64621
## 478        27.8931 24.11975 31.66645 22.12226 33.66393
## 479        27.8931 24.10820 31.67800 22.10459 33.68161
## 480        27.8931 24.09667 31.68952 22.08697 33.69923
## 481        27.8931 24.08519 31.70101 22.06940 33.71680
## 482        27.8931 24.07374 31.71246 22.05189 33.73431
## 483        27.8931 24.06232 31.72388 22.03442 33.75178
## 484        27.8931 24.05093 31.73527 22.01701 33.76919
## 485        27.8931 24.03958 31.74662 21.99965 33.78655
## 486        27.8931 24.02827 31.75793 21.98235 33.80385
## 487        27.8931 24.01698 31.76922 21.96509 33.82111
## 488        27.8931 24.00573 31.78047 21.94788 33.83832
## 489        27.8931 23.99451 31.79169 21.93072 33.85548
## 490        27.8931 23.98332 31.80288 21.91361 33.87259
## 491        27.8931 23.97217 31.81403 21.89655 33.88965
## 492        27.8931 23.96105 31.82515 21.87954 33.90666
## 493        27.8931 23.94995 31.83625 21.86258 33.92362
## 494        27.8931 23.93889 31.84731 21.84566 33.94054
## 495        27.8931 23.92786 31.85834 21.82879 33.95741
## 496        27.8931 23.91686 31.86934 21.81197 33.97423
## 497        27.8931 23.90590 31.88030 21.79520 33.99100
## 498        27.8931 23.89496 31.89124 21.77847 34.00773
## 499        27.8931 23.88405 31.90215 21.76178 34.02442
## 500        27.8931 23.87317 31.91303 21.74514 34.04105
#Lamda Optimum Holt Winter
sesopt<- HoltWinters(train.ts, gamma = FALSE, beta = FALSE,alpha = NULL)
sesopt
## Holt-Winters exponential smoothing without trend and without seasonal component.
## 
## Call:
## HoltWinters(x = train.ts, alpha = NULL, beta = FALSE, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 0.9999261
##  beta : FALSE
##  gamma: FALSE
## 
## Coefficients:
##      [,1]
## a 27.8931
plot(sesopt)

#ramalan
ramalanopt<- forecast(sesopt, h=185)
ramalanopt
##     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 316        27.8931 27.59759 28.18861 27.44116 28.34504
## 317        27.8931 27.47521 28.31099 27.25399 28.53221
## 318        27.8931 27.38129 28.40491 27.11036 28.67584
## 319        27.8931 27.30212 28.48408 26.98927 28.79693
## 320        27.8931 27.23237 28.55383 26.88260 28.90360
## 321        27.8931 27.16930 28.61690 26.78615 29.00005
## 322        27.8931 27.11131 28.67489 26.69746 29.08874
## 323        27.8931 27.05734 28.72886 26.61491 29.17129
## 324        27.8931 27.00664 28.77956 26.53737 29.24882
## 325        27.8931 26.95869 28.82751 26.46404 29.32216
## 326        27.8931 26.91308 28.87312 26.39429 29.39191
## 327        27.8931 26.86950 28.91669 26.32765 29.45855
## 328        27.8931 26.82771 28.95849 26.26372 29.52247
## 329        27.8931 26.78749 28.99871 26.20222 29.58398
## 330        27.8931 26.74869 29.03751 26.14287 29.64333
## 331        27.8931 26.71116 29.07504 26.08547 29.70073
## 332        27.8931 26.67478 29.11142 26.02984 29.75636
## 333        27.8931 26.63946 29.14674 25.97582 29.81038
## 334        27.8931 26.60511 29.18109 25.92329 29.86291
## 335        27.8931 26.57165 29.21455 25.87211 29.91409
## 336        27.8931 26.53901 29.24719 25.82220 29.96399
## 337        27.8931 26.50715 29.27905 25.77347 30.01273
## 338        27.8931 26.47600 29.31020 25.72583 30.06037
## 339        27.8931 26.44552 29.34068 25.67922 30.10698
## 340        27.8931 26.41567 29.37053 25.63357 30.15263
## 341        27.8931 26.38641 29.39979 25.58882 30.19738
## 342        27.8931 26.35771 29.42849 25.54493 30.24127
## 343        27.8931 26.32954 29.45666 25.50184 30.28436
## 344        27.8931 26.30186 29.48434 25.45951 30.32669
## 345        27.8931 26.27466 29.51154 25.41791 30.36829
## 346        27.8931 26.24791 29.53829 25.37699 30.40920
## 347        27.8931 26.22158 29.56462 25.33673 30.44946
## 348        27.8931 26.19567 29.59053 25.29710 30.48910
## 349        27.8931 26.17014 29.61606 25.25806 30.52814
## 350        27.8931 26.14499 29.64121 25.21959 30.56661
## 351        27.8931 26.12019 29.66601 25.18167 30.60453
## 352        27.8931 26.09573 29.69047 25.14427 30.64193
## 353        27.8931 26.07161 29.71459 25.10737 30.67883
## 354        27.8931 26.04780 29.73840 25.07095 30.71525
## 355        27.8931 26.02429 29.76191 25.03500 30.75120
## 356        27.8931 26.00107 29.78513 24.99949 30.78671
## 357        27.8931 25.97814 29.80806 24.96442 30.82178
## 358        27.8931 25.95547 29.83073 24.92976 30.85644
## 359        27.8931 25.93307 29.85313 24.89550 30.89070
## 360        27.8931 25.91093 29.87527 24.86163 30.92457
## 361        27.8931 25.88902 29.89718 24.82813 30.95807
## 362        27.8931 25.86736 29.91884 24.79499 30.99121
## 363        27.8931 25.84592 29.94028 24.76221 31.02399
## 364        27.8931 25.82470 29.96150 24.72976 31.05644
## 365        27.8931 25.80371 29.98249 24.69765 31.08855
## 366        27.8931 25.78291 30.00328 24.66585 31.12035
## 367        27.8931 25.76233 30.02387 24.63436 31.15184
## 368        27.8931 25.74194 30.04426 24.60318 31.18302
## 369        27.8931 25.72174 30.06446 24.57229 31.21391
## 370        27.8931 25.70172 30.08448 24.54168 31.24452
## 371        27.8931 25.68189 30.10431 24.51135 31.27485
## 372        27.8931 25.66224 30.12396 24.48129 31.30491
## 373        27.8931 25.64275 30.14345 24.45149 31.33471
## 374        27.8931 25.62344 30.16276 24.42195 31.36425
## 375        27.8931 25.60428 30.18192 24.39266 31.39354
## 376        27.8931 25.58529 30.20091 24.36361 31.42259
## 377        27.8931 25.56645 30.21975 24.33479 31.45141
## 378        27.8931 25.54776 30.23844 24.30621 31.47999
## 379        27.8931 25.52922 30.25698 24.27786 31.50834
## 380        27.8931 25.51082 30.27538 24.24972 31.53648
## 381        27.8931 25.49257 30.29363 24.22180 31.56440
## 382        27.8931 25.47445 30.31175 24.19410 31.59210
## 383        27.8931 25.45647 30.32973 24.16659 31.61961
## 384        27.8931 25.43862 30.34758 24.13929 31.64691
## 385        27.8931 25.42090 30.36530 24.11219 31.67401
## 386        27.8931 25.40330 30.38290 24.08528 31.70092
## 387        27.8931 25.38583 30.40037 24.05856 31.72764
## 388        27.8931 25.36848 30.41772 24.03202 31.75418
## 389        27.8931 25.35124 30.43496 24.00566 31.78053
## 390        27.8931 25.33413 30.45207 23.97949 31.80671
## 391        27.8931 25.31712 30.46908 23.95348 31.83272
## 392        27.8931 25.30023 30.48597 23.92765 31.85855
## 393        27.8931 25.28345 30.50275 23.90198 31.88422
## 394        27.8931 25.26677 30.51943 23.87648 31.90972
## 395        27.8931 25.25020 30.53600 23.85114 31.93506
## 396        27.8931 25.23374 30.55246 23.82595 31.96025
## 397        27.8931 25.21737 30.56883 23.80092 31.98527
## 398        27.8931 25.20110 30.58509 23.77605 32.01015
## 399        27.8931 25.18494 30.60126 23.75132 32.03488
## 400        27.8931 25.16886 30.61734 23.72674 32.05946
## 401        27.8931 25.15289 30.63331 23.70230 32.08390
## 402        27.8931 25.13700 30.64920 23.67801 32.10819
## 403        27.8931 25.12121 30.66499 23.65385 32.13235
## 404        27.8931 25.10550 30.68070 23.62984 32.15636
## 405        27.8931 25.08988 30.69632 23.60595 32.18025
## 406        27.8931 25.07435 30.71185 23.58220 32.20400
## 407        27.8931 25.05891 30.72729 23.55858 32.22762
## 408        27.8931 25.04355 30.74265 23.53509 32.25111
## 409        27.8931 25.02827 30.75793 23.51172 32.27448
## 410        27.8931 25.01307 30.77313 23.48847 32.29773
## 411        27.8931 24.99795 30.78825 23.46535 32.32085
## 412        27.8931 24.98291 30.80329 23.44235 32.34385
## 413        27.8931 24.96795 30.81825 23.41947 32.36673
## 414        27.8931 24.95306 30.83314 23.39670 32.38950
## 415        27.8931 24.93825 30.84795 23.37405 32.41215
## 416        27.8931 24.92351 30.86269 23.35151 32.43469
## 417        27.8931 24.90885 30.87735 23.32908 32.45712
## 418        27.8931 24.89426 30.89194 23.30676 32.47943
## 419        27.8931 24.87973 30.90647 23.28455 32.50164
## 420        27.8931 24.86528 30.92092 23.26245 32.52375
## 421        27.8931 24.85090 30.93530 23.24045 32.54575
## 422        27.8931 24.83658 30.94962 23.21856 32.56764
## 423        27.8931 24.82233 30.96387 23.19677 32.58943
## 424        27.8931 24.80815 30.97805 23.17507 32.61113
## 425        27.8931 24.79403 30.99217 23.15348 32.63272
## 426        27.8931 24.77997 31.00623 23.13199 32.65421
## 427        27.8931 24.76598 31.02022 23.11059 32.67561
## 428        27.8931 24.75205 31.03415 23.08928 32.69692
## 429        27.8931 24.73819 31.04801 23.06807 32.71812
## 430        27.8931 24.72438 31.06182 23.04696 32.73924
## 431        27.8931 24.71063 31.07557 23.02593 32.76027
## 432        27.8931 24.69694 31.08926 23.00500 32.78120
## 433        27.8931 24.68331 31.10289 22.98416 32.80204
## 434        27.8931 24.66974 31.11646 22.96340 32.82280
## 435        27.8931 24.65623 31.12997 22.94273 32.84347
## 436        27.8931 24.64277 31.14343 22.92215 32.86405
## 437        27.8931 24.62936 31.15684 22.90165 32.88455
## 438        27.8931 24.61602 31.17018 22.88123 32.90497
## 439        27.8931 24.60272 31.18348 22.86090 32.92530
## 440        27.8931 24.58948 31.19672 22.84065 32.94555
## 441        27.8931 24.57629 31.20991 22.82048 32.96572
## 442        27.8931 24.56316 31.22304 22.80039 32.98581
## 443        27.8931 24.55007 31.23613 22.78038 33.00582
## 444        27.8931 24.53704 31.24916 22.76045 33.02575
## 445        27.8931 24.52406 31.26214 22.74059 33.04561
## 446        27.8931 24.51112 31.27508 22.72081 33.06539
## 447        27.8931 24.49824 31.28796 22.70111 33.08509
## 448        27.8931 24.48540 31.30080 22.68148 33.10472
## 449        27.8931 24.47262 31.31358 22.66192 33.12428
## 450        27.8931 24.45988 31.32632 22.64244 33.14376
## 451        27.8931 24.44718 31.33901 22.62303 33.16317
## 452        27.8931 24.43454 31.35166 22.60369 33.18251
## 453        27.8931 24.42194 31.36426 22.58442 33.20178
## 454        27.8931 24.40939 31.37681 22.56522 33.22098
## 455        27.8931 24.39688 31.38932 22.54609 33.24011
## 456        27.8931 24.38441 31.40179 22.52703 33.25917
## 457        27.8931 24.37199 31.41421 22.50803 33.27817
## 458        27.8931 24.35962 31.42658 22.48910 33.29710
## 459        27.8931 24.34728 31.43892 22.47024 33.31596
## 460        27.8931 24.33499 31.45121 22.45144 33.33476
## 461        27.8931 24.32274 31.46346 22.43271 33.35349
## 462        27.8931 24.31054 31.47566 22.41404 33.37216
## 463        27.8931 24.29837 31.48783 22.39544 33.39076
## 464        27.8931 24.28625 31.49995 22.37690 33.40930
## 465        27.8931 24.27417 31.51203 22.35842 33.42778
## 466        27.8931 24.26212 31.52408 22.34000 33.44620
## 467        27.8931 24.25012 31.53608 22.32164 33.46456
## 468        27.8931 24.23816 31.54804 22.30334 33.48285
## 469        27.8931 24.22623 31.55997 22.28511 33.50109
## 470        27.8931 24.21434 31.57186 22.26693 33.51927
## 471        27.8931 24.20250 31.58370 22.24881 33.53739
## 472        27.8931 24.19069 31.59551 22.23075 33.55545
## 473        27.8931 24.17891 31.60729 22.21274 33.57346
## 474        27.8931 24.16718 31.61902 22.19480 33.59140
## 475        27.8931 24.15548 31.63072 22.17690 33.60929
## 476        27.8931 24.14382 31.64238 22.15907 33.62713
## 477        27.8931 24.13219 31.65401 22.14129 33.64491
## 478        27.8931 24.12060 31.66560 22.12356 33.66264
## 479        27.8931 24.10905 31.67715 22.10589 33.68031
## 480        27.8931 24.09753 31.68867 22.08828 33.69792
## 481        27.8931 24.08605 31.70015 22.07071 33.71549
## 482        27.8931 24.07460 31.71160 22.05320 33.73300
## 483        27.8931 24.06318 31.72302 22.03574 33.75046
## 484        27.8931 24.05180 31.73440 22.01834 33.76786
## 485        27.8931 24.04045 31.74575 22.00098 33.78522
## 486        27.8931 24.02914 31.75706 21.98368 33.80252
## 487        27.8931 24.01785 31.76835 21.96642 33.81978
## 488        27.8931 24.00660 31.77959 21.94922 33.83698
## 489        27.8931 23.99539 31.79081 21.93206 33.85413
## 490        27.8931 23.98420 31.80200 21.91496 33.87124
## 491        27.8931 23.97305 31.81315 21.89790 33.88830
## 492        27.8931 23.96193 31.82427 21.88090 33.90530
## 493        27.8931 23.95084 31.83536 21.86394 33.92226
## 494        27.8931 23.93978 31.84642 21.84702 33.93918
## 495        27.8931 23.92876 31.85744 21.83016 33.95604
## 496        27.8931 23.91776 31.86844 21.81334 33.97286
## 497        27.8931 23.90679 31.87941 21.79657 33.98963
## 498        27.8931 23.89586 31.89034 21.77984 34.00636
## 499        27.8931 23.88495 31.90125 21.76316 34.02304
## 500        27.8931 23.87407 31.91213 21.74653 34.03967

Setelah dilakukan peramalan, akan dilakukan perhitungan keakuratan hasil peramalan. Perhitungan akurasi ini dilakukan baik pada data latih dan data uji.

Akurasi Data Latih

Perhitungan akurasi data dapat dilakukan dengan cara langsung maupun manual. Secara langsung, nilai akurasi dapat diambil dari objek yang tersimpan pada hasil SES, yaitu sum of squared errors (SSE). Nilai akurasi lain dapat dihitung pula dari nilai SSE tersebut.

#Keakuratan Metode
#Pada data training
SSE1<-ses1$SSE
MSE1<-ses1$SSE/length(train.ts)
RMSE1<-sqrt(MSE1)

akurasi1 <- matrix(c(SSE1,MSE1,RMSE1))
row.names(akurasi1)<- c("SSE", "MSE", "RMSE")
colnames(akurasi1) <- c("Akurasi lamda=0.2")
akurasi1
##      Akurasi lamda=0.2
## SSE         37.4662879
## MSE          0.1189406
## RMSE         0.3448777
SSE2<-ses2$SSE
MSE2<-ses2$SSE/length(train.ts)
RMSE2<-sqrt(MSE2)

akurasi2 <- matrix(c(SSE2,MSE2,RMSE2))
row.names(akurasi2)<- c("SSE", "MSE", "RMSE")
colnames(akurasi2) <- c("Akurasi lamda=0.7")
akurasi2
##      Akurasi lamda=0.7
## SSE        18.09058324
## MSE         0.05743042
## RMSE        0.23964645
#Cara Manual
fitted1<-ramalan1$fitted
sisaan1<-ramalan1$residuals
head(sisaan1)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]         NA  0.2024000  0.4355200  0.5323160  0.2358528 -0.2518178
resid1<-training$temperature-ramalan1$fitted
head(resid1)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]         NA  0.2024000  0.4355200  0.5323160  0.2358528 -0.2518178
#Cara Manual
SSE.1=sum(sisaan1[2:length(train.ts)]^2)
SSE.1
## [1] 37.46629
MSE.1 = SSE.1/length(train.ts)
MSE.1
## [1] 0.1189406
MAPE.1 = sum(abs(sisaan1[2:length(train.ts)]/train.ts[2:length(train.ts)])*
               100)/length(train.ts)
MAPE.1
## [1] 0.9248797
akurasi.1 <- matrix(c(SSE.1,MSE.1,MAPE.1))
row.names(akurasi.1)<- c("SSE", "MSE", "MAPE")
colnames(akurasi.1) <- c("Akurasi lamda=0.2")
akurasi.1
##      Akurasi lamda=0.2
## SSE         37.4662879
## MSE          0.1189406
## MAPE         0.9248797
fitted2<-ramalan2$fitted
sisaan2<-ramalan2$residuals
head(sisaan2)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]         NA  0.2024000  0.3343200  0.2841960 -0.1047412 -0.4719224
resid2<-training$temperature-ramalan2$fitted
head(resid2)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]         NA  0.2024000  0.3343200  0.2841960 -0.1047412 -0.4719224
SSE.2=sum(sisaan2[2:length(train.ts)]^2)
SSE.2
## [1] 18.09058
MSE.2 = SSE.2/length(train.ts)
MSE.2
## [1] 0.05743042
MAPE.2 = sum(abs(sisaan2[2:length(train.ts)]/train.ts[2:length(train.ts)])*
               100)/length(train.ts)
MAPE.2
## [1] 0.6111395
akurasi.2 <- matrix(c(SSE.2,MSE.2,MAPE.2))
row.names(akurasi.2)<- c("SSE", "MSE", "MAPE")
colnames(akurasi.2) <- c("Akurasi lamda=0.7")
akurasi.2
##      Akurasi lamda=0.7
## SSE        18.09058324
## MSE         0.05743042
## MAPE        0.61113949

Berdasarkan nilai SSE, MSE, RMSE, dan MAPE di antara kedua parameter, nilai parameter \(\lambda=0,7\) menghasilkan akurasi yang lebih baik dibanding \(\lambda=0,2\) . Hal ini dilihat dari nilai masing-masing ukuran akurasi yang lebih kecil. Berdasarkan nilai MAPE-nya, hasil ini dapat dikategorikan sebagai peramalan sangat baik.

Akurasi Data Uji

Akurasi data uji dapat dihitung dengan cara yang hampir sama dengan perhitungan akurasi data latih.

selisih1<-ramalan1$mean-testing$temperature
SSEtesting1<-sum(selisih1^2)
MSEtesting1<-SSEtesting1/length(testing)

selisih2<-ramalan2$mean-testing$temperature
SSEtesting2<-sum(selisih2^2)
MSEtesting2<-SSEtesting2/length(testing)

selisihopt<-ramalanopt$mean-testing$temperature
SSEtestingopt<-sum(selisihopt^2)
MSEtestingopt<-SSEtestingopt/length(testing)

akurasitesting1 <- matrix(c(SSEtesting1,SSEtesting2,SSEtestingopt))
row.names(akurasitesting1)<- c("SSE1", "SSE2", "SSEopt")
akurasitesting1
##            [,1]
## SSE1   73.50322
## SSE2   79.05504
## SSEopt 81.85931
akurasitesting2 <- matrix(c(MSEtesting1,MSEtesting2,MSEtestingopt))
row.names(akurasitesting2)<- c("MSE1", "MSE2", "MSEopt")
akurasitesting2
##            [,1]
## MSE1   36.75161
## MSE2   39.52752
## MSEopt 40.92966

Berdasarkan nilai SSE, MSE, di antara ketiga parameter, pada data uji nilai parameter \(\lambda=0,2\) menghasilkan akurasi yang lebih baik dibanding \(\lambda=0,7\) dan \(\lambda\) fungsi optimum. Hal ini dilihat dari nilai masing-masing ukuran akurasi yang lebih kecil.

DES

Metode pemulusan Double Exponential Smoothing (DES) digunakan untuk data yang memiliki pola tren. Metode DES adalah metode semacam SES, hanya saja dilakukan dua kali, yaitu pertama untuk tahapan ‘level’ dan kedua untuk tahapan ‘tren’. Pemulusan menggunakan metode ini akan menghasilkan peramalan tidak konstan untuk periode berikutnya.

Pemulusan dengan metode DES kali ini akan menggunakan fungsi HoltWinters() . Jika sebelumnya nilai argumen beta dibuat FALSE , kali ini argumen tersebut akan diinisialisasi bersamaan dengan nilai alpha .

#Lamda=0.2 dan gamma=0.2
des.1<- HoltWinters(train.ts, gamma = FALSE, beta = 0.2, alpha = 0.2)
plot(des.1)

#ramalan
ramalandes1<- forecast(des.1, h=185)
ramalandes1
##     Point Forecast       Lo 80    Hi 80        Lo 95    Hi 95
## 316       27.90237  27.3692869 28.43546  27.08708882 28.71765
## 317       27.85449  27.3062678 28.40271  27.01605623 28.69292
## 318       27.80661  27.2384300 28.37479  26.93765400 28.67556
## 319       27.75873  27.1654932 28.35196  26.85145356 28.66600
## 320       27.71085  27.0873429 28.33435  26.75727975 28.66441
## 321       27.66297  27.0040076 28.32192  26.65517606 28.67076
## 322       27.61508  26.9156255 28.31454  26.54535413 28.68482
## 323       27.56720  26.8224096 28.31200  26.42813938 28.70627
## 324       27.51932  26.7246148 28.31403  26.30392193 28.73472
## 325       27.47144  26.6225132 28.32037  26.17311776 28.76977
## 326       27.42356  26.5163758 28.33074  26.03614131 28.81098
## 327       27.37568  26.4064611 28.34490  25.89338804 28.85797
## 328       27.32780  26.2930090 28.36259  25.74522483 28.91037
## 329       27.27992  26.1762381 28.38360  25.59198581 28.96785
## 330       27.23204  26.0563449 28.40773  25.43397175 29.03010
## 331       27.18415  25.9335052 28.43480  25.27145145 29.09686
## 332       27.13627  25.8078756 28.46467  25.10466425 29.16788
## 333       27.08839  25.6795951 28.49719  24.93382297 29.24296
## 334       27.04051  25.5487877 28.53223  24.75911696 29.32191
## 335       26.99263  25.4155635 28.56970  24.58071494 29.40454
## 336       26.94475  25.2800212 28.60948  24.39876760 29.49073
## 337       26.89687  25.1422490 28.65149  24.21341001 29.58033
## 338       26.84899  25.0023264 28.69565  24.02476361 29.67321
## 339       26.80111  24.8603251 28.74189  23.83293802 29.76927
## 340       26.75322  24.7163099 28.79014  23.63803254 29.86842
## 341       26.70534  24.5703399 28.84035  23.44013750 29.97055
## 342       26.65746  24.4224691 28.89245  23.23933539 30.07559
## 343       26.60958  24.2727469 28.94641  23.03570180 30.18346
## 344       26.56170  24.1212188 29.00218  22.82930626 30.29409
## 345       26.51382  23.9679267 29.05971  22.62021296 30.40742
## 346       26.46594  23.8129095 29.11897  22.40848136 30.52339
## 347       26.41806  23.6562033 29.17991  22.19416670 30.64195
## 348       26.37018  23.4978418 29.24251  21.97732049 30.76303
## 349       26.32229  23.3378566 29.30673  21.75799085 30.88660
## 350       26.27441  23.1762770 29.37255  21.53622294 31.01260
## 351       26.22653  23.0131308 29.43993  21.31205915 31.14100
## 352       26.17865  22.8484442 29.50886  21.08553946 31.27176
## 353       26.13077  22.6822418 29.57930  20.85670161 31.40484
## 354       26.08289  22.5145470 29.65123  20.62558133 31.54020
## 355       26.03501  22.3453820 29.72463  20.39221249 31.67780
## 356       25.98713  22.1747678 29.79948  20.15662731 31.81762
## 357       25.93924  22.0027244 29.87577  19.91885643 31.95963
## 358       25.89136  21.8292710 29.95346  19.67892908 32.10380
## 359       25.84348  21.6544258 30.03254  19.43687321 32.25009
## 360       25.79560  21.4782063 30.11300  19.19271552 32.39849
## 361       25.74772  21.3006293 30.19481  18.94648162 32.54896
## 362       25.69984  21.1217108 30.27797  18.69819606 32.70148
## 363       25.65196  20.9414661 30.36245  18.44788245 32.85603
## 364       25.60408  20.7599103 30.44824  18.19556347 33.01259
## 365       25.55620  20.5770575 30.53533  17.94126099 33.17113
## 366       25.50831  20.3929215 30.62371  17.68499607 33.33163
## 367       25.46043  20.2075156 30.71335  17.42678903 33.49408
## 368       25.41255  20.0208528 30.80425  17.16665953 33.65844
## 369       25.36467  19.8329452 30.89640  16.90462653 33.82472
## 370       25.31679  19.6438051 30.98977  16.64070843 33.99287
## 371       25.26891  19.4534440 31.08437  16.37492300 34.16289
## 372       25.22103  19.2618732 31.18018  16.10728750 34.33477
## 373       25.17315  19.0691037 31.27719  15.83781867 34.50847
## 374       25.12527  18.8751460 31.37538  15.56653273 34.68400
## 375       25.07738  18.6800105 31.47476  15.29344547 34.86132
## 376       25.02950  18.4837072 31.57530  15.01857222 35.04043
## 377       24.98162  18.2862458 31.67700  14.74192789 35.22132
## 378       24.93374  18.0876359 31.77985  14.46352700 35.40395
## 379       24.88586  17.8878867 31.88383  14.18338369 35.58834
## 380       24.83798  17.6870072 31.98895  13.90151172 35.77444
## 381       24.79010  17.4850061 32.09519  13.61792451 35.96227
## 382       24.74222  17.2818921 32.20254  13.33263517 36.15180
## 383       24.69433  17.0776735 32.31100  13.04565646 36.34301
## 384       24.64645  16.8723584 32.42055  12.75700086 36.53591
## 385       24.59857  16.6659548 32.53119  12.46668053 36.73046
## 386       24.55069  16.4584704 32.64291  12.17470740 36.92668
## 387       24.50281  16.2499130 32.75571  11.88109308 37.12453
## 388       24.45493  16.0402899 32.86957  11.58584895 37.32401
## 389       24.40705  15.8296084 32.98449  11.28898614 37.52511
## 390       24.35917  15.6178756 33.10046  10.99051554 37.72782
## 391       24.31129  15.4050985 33.21747  10.69044781 37.93212
## 392       24.26340  15.1912840 33.33553  10.38879338 38.13802
## 393       24.21552  14.9764386 33.45461  10.08556248 38.34548
## 394       24.16764  14.7605690 33.57472   9.78076513 38.55452
## 395       24.11976  14.5436815 33.69584   9.47441116 38.76511
## 396       24.07188  14.3257825 33.81798   9.16651019 38.97725
## 397       24.02400  14.1068782 33.94112   8.85707166 39.19093
## 398       23.97612  13.8869746 34.06526   8.54610485 39.40613
## 399       23.92824  13.6660776 34.19040   8.23361884 39.62285
## 400       23.88036  13.4441932 34.31652   7.91962257 39.84109
## 401       23.83247  13.2213269 34.44362   7.60412479 40.06082
## 402       23.78459  12.9974845 34.57170   7.28713411 40.28205
## 403       23.73671  12.7726715 34.70075   6.96865899 40.50476
## 404       23.68883  12.5468932 34.83077   6.64870773 40.72895
## 405       23.64095  12.3201551 34.96174   6.32728850 40.95461
## 406       23.59307  12.0924624 35.09367   6.00440932 41.18173
## 407       23.54519  11.8638203 35.22655   5.68007809 41.41030
## 408       23.49731  11.6342338 35.36038   5.35430255 41.64031
## 409       23.44943  11.4037079 35.49514   5.02709034 41.87176
## 410       23.40154  11.1722475 35.63084   4.69844897 42.10464
## 411       23.35366  10.9398574 35.76747   4.36838583 42.33894
## 412       23.30578  10.7065425 35.90502   4.03690819 42.57466
## 413       23.25790  10.4723074 36.04349   3.70402320 42.81178
## 414       23.21002  10.2371566 36.18288   3.36973791 43.05030
## 415       23.16214  10.0010948 36.32318   3.03405926 43.29022
## 416       23.11426   9.7641264 36.46439   2.69699408 43.53152
## 417       23.06638   9.5262558 36.60650   2.35854910 43.77420
## 418       23.01849   9.2874873 36.74950   2.01873096 44.01826
## 419       22.97061   9.0478252 36.89340   1.67754619 44.26368
## 420       22.92273   8.8072737 37.03819   1.33500123 44.51046
## 421       22.87485   8.5658370 37.18387   0.99110243 44.75860
## 422       22.82697   8.3235192 37.33042   0.64585603 45.00808
## 423       22.77909   8.0803243 37.47785   0.29926822 45.25891
## 424       22.73121   7.8362562 37.62616  -0.04865492 45.51107
## 425       22.68333   7.5913189 37.77533  -0.39790740 45.76456
## 426       22.63545   7.3455163 37.92537  -0.74848330 46.01937
## 427       22.58756   7.0988522 38.07628  -1.10037678 46.27551
## 428       22.53968   6.8513303 38.22804  -1.45358209 46.53295
## 429       22.49180   6.6029544 38.38065  -1.80809353 46.79170
## 430       22.44392   6.3537281 38.53411  -2.16390550 47.05175
## 431       22.39604   6.1036551 38.68842  -2.52101246 47.31309
## 432       22.34816   5.8527389 38.84358  -2.87940896 47.57573
## 433       22.30028   5.6009830 38.99957  -3.23908959 47.83964
## 434       22.25240   5.3483909 39.15640  -3.60004903 48.10484
## 435       22.20452   5.0949662 39.31406  -3.96228203 48.37131
## 436       22.15663   4.8407121 39.47256  -4.32578339 48.63905
## 437       22.10875   4.5856320 39.63187  -4.69054797 48.90805
## 438       22.06087   4.3297292 39.79201  -5.05657072 49.17831
## 439       22.01299   4.0730071 39.95297  -5.42384663 49.44983
## 440       21.96511   3.8154687 40.11475  -5.79237075 49.72259
## 441       21.91723   3.5571174 40.27734  -6.16213820 49.99660
## 442       21.86935   3.2979563 40.44074  -6.53314415 50.27184
## 443       21.82147   3.0379886 40.60494  -6.90538383 50.54832
## 444       21.77358   2.7772172 40.76995  -7.27885252 50.82602
## 445       21.72570   2.5156452 40.93576  -7.65354555 51.10495
## 446       21.67782   2.2532757 41.10237  -8.02945833 51.38510
## 447       21.62994   1.9901116 41.26977  -8.40658630 51.66647
## 448       21.58206   1.7261559 41.43796  -8.78492494 51.94905
## 449       21.53418   1.4614115 41.60695  -9.16446982 52.23283
## 450       21.48630   1.1958813 41.77671  -9.54521651 52.51781
## 451       21.43842   0.9295681 41.94727  -9.92716068 52.80399
## 452       21.39054   0.6624747 42.11860 -10.31029800 53.09137
## 453       21.34265   0.3946040 42.29071 -10.69462421 53.37993
## 454       21.29477   0.1259586 42.46359 -11.08013511 53.66968
## 455       21.24689  -0.1434587 42.63724 -11.46682651 53.96061
## 456       21.19901  -0.4136451 42.81167 -11.85469429 54.25272
## 457       21.15113  -0.6845981 42.98686 -12.24373437 54.54599
## 458       21.10325  -0.9563150 43.16281 -12.63394271 54.84044
## 459       21.05537  -1.2287931 43.33953 -13.02531531 55.13605
## 460       21.00749  -1.5020299 43.51700 -13.41784821 55.43282
## 461       20.95961  -1.7760229 43.69523 -13.81153749 55.73075
## 462       20.91172  -2.0507694 43.87422 -14.20637928 56.02983
## 463       20.86384  -2.3262670 44.05395 -14.60236974 56.33006
## 464       20.81596  -2.6025131 44.23444 -14.99950506 56.63143
## 465       20.76808  -2.8795055 44.41567 -15.39778150 56.93394
## 466       20.72020  -3.1572415 44.59764 -15.79719531 57.23759
## 467       20.67232  -3.4357187 44.78036 -16.19774282 57.54238
## 468       20.62444  -3.7149349 44.96381 -16.59942037 57.84830
## 469       20.57656  -3.9948876 45.14800 -17.00222435 58.15534
## 470       20.52868  -4.2755745 45.33292 -17.40615117 58.46350
## 471       20.48079  -4.5569933 45.51858 -17.81119728 58.77279
## 472       20.43291  -4.8391416 45.70497 -18.21735917 59.08318
## 473       20.38503  -5.1220173 45.89208 -18.62463337 59.39470
## 474       20.33715  -5.4056179 46.07992 -19.03301641 59.70732
## 475       20.28927  -5.6899414 46.26848 -19.44250490 60.02104
## 476       20.24139  -5.9749855 46.45776 -19.85309543 60.33587
## 477       20.19351  -6.2607479 46.64776 -20.26478466 60.65180
## 478       20.14563  -6.5472266 46.83848 -20.67756926 60.96882
## 479       20.09774  -6.8344194 47.02991 -21.09144595 61.28694
## 480       20.04986  -7.1223241 47.22205 -21.50641146 61.60614
## 481       20.00198  -7.4109386 47.41490 -21.92246255 61.92643
## 482       19.95410  -7.7002609 47.60846 -22.33959602 62.24780
## 483       19.90622  -7.9902888 47.80273 -22.75780870 62.57025
## 484       19.85834  -8.2810203 47.99770 -23.17709743 62.89378
## 485       19.81046  -8.5724534 48.19337 -23.59745910 63.21838
## 486       19.76258  -8.8645860 48.38974 -24.01889061 63.54404
## 487       19.71470  -9.1574161 48.58681 -24.44138889 63.87078
## 488       19.66681  -9.4509418 48.78457 -24.86495091 64.19858
## 489       19.61893  -9.7451610 48.98303 -25.28957365 64.52744
## 490       19.57105 -10.0400719 49.18218 -25.71525412 64.85736
## 491       19.52317 -10.3356724 49.38201 -26.14198936 65.18833
## 492       19.47529 -10.6319607 49.58254 -26.56977642 65.52036
## 493       19.42741 -10.9289348 49.78375 -26.99861240 65.85343
## 494       19.37953 -11.2265929 49.98565 -27.42849441 66.18755
## 495       19.33165 -11.5249331 50.18823 -27.85941957 66.52271
## 496       19.28377 -11.8239534 50.39148 -28.29138505 66.85892
## 497       19.23588 -12.1236522 50.59542 -28.72438803 67.19616
## 498       19.18800 -12.4240276 50.80003 -29.15842571 67.53443
## 499       19.14012 -12.7250776 51.00532 -29.59349531 67.87374
## 500       19.09224 -13.0268006 51.21128 -30.02959409 68.21408
#Lamda=0.6 dan gamma=0.3
des.2<- HoltWinters(train.ts, gamma = FALSE, beta = 0.3, alpha = 0.6)
plot(des.2)

#ramalan
ramalandes2<- forecast(des.2, h=185)
ramalandes2
##     Point Forecast       Lo 80    Hi 80        Lo 95     Hi 95
## 316      27.814773  27.4732699 28.15628   27.2924890  28.33706
## 317      27.709460  27.2763558 28.14256   27.0470845  28.37183
## 318      27.604146  27.0609517 28.14734   26.7734020  28.43489
## 319      27.498832  26.8305320 28.16713   26.4767553  28.52091
## 320      27.393519  26.5873972 28.19964   26.1606623  28.62637
## 321      27.288205  26.3330941 28.24332   25.8274889  28.74892
## 322      27.182891  26.0687110 28.29707   25.4788995  28.88688
## 323      27.077578  25.7950521 28.36010   25.1161240  29.03903
## 324      26.972264  25.5127379 28.43179   24.7401115  29.20442
## 325      26.866950  25.2222654 28.51164   24.3516218  29.38228
## 326      26.761637  24.9240444 28.59923   23.9512817  29.57199
## 327      26.656323  24.6184210 28.69423   23.5396207  29.77303
## 328      26.551010  24.3056935 28.79633   23.1170949  29.98492
## 329      26.445696  23.9861228 28.90527   22.6841034  30.20729
## 330      26.340382  23.6599402 29.02082   22.2409999  30.43976
## 331      26.235069  23.3273530 29.14278   21.7881013  30.68204
## 332      26.129755  22.9885482 29.27096   21.3256938  30.93382
## 333      26.024441  22.6436966 29.40519   20.8540384  31.19484
## 334      25.919128  22.2929543 29.54530   20.3733741  31.46488
## 335      25.813814  21.9364655 29.69116   19.8839211  31.74371
## 336      25.708500  21.5743634 29.84264   19.3858835  32.03112
## 337      25.603187  21.2067724 29.99960   18.8794512  32.32692
## 338      25.497873  20.8338081 30.16194   18.3648012  32.63095
## 339      25.392559  20.4555791 30.32954   17.8420995  32.94302
## 340      25.287246  20.0721873 30.50230   17.3115021  33.26299
## 341      25.181932  19.6837290 30.68014   16.7731560  33.59071
## 342      25.076619  19.2902947 30.86294   16.2271999  33.92604
## 343      24.971305  18.8919705 31.05064   15.6737653  34.26884
## 344      24.865991  18.4888379 31.24314   15.1129768  34.61901
## 345      24.760678  18.0809742 31.44038   14.5449529  34.97640
## 346      24.655364  17.6684534 31.64227   13.9698063  35.34092
## 347      24.550050  17.2513457 31.84875   13.3876449  35.71246
## 348      24.444737  16.8297184 32.05976   12.7985712  36.09090
## 349      24.339423  16.4036357 32.27521   12.2026836  36.47616
## 350      24.234109  15.9731593 32.49506   11.6000764  36.86814
## 351      24.128796  15.5383482 32.71924   10.9908399  37.26675
## 352      24.023482  15.0992591 32.94771   10.3750608  37.67190
## 353      23.918169  14.6559466 33.18039    9.7528225  38.08351
## 354      23.812855  14.2084631 33.41725    9.1242052  38.50150
## 355      23.707541  13.7568592 33.65822    8.4892863  38.92580
## 356      23.602228  13.3011836 33.90327    7.8481402  39.35631
## 357      23.496914  12.8414832 34.15234    7.2008390  39.79299
## 358      23.391600  12.3778037 34.40540    6.5474519  40.23575
## 359      23.286287  11.9101887 34.66238    5.8880463  40.68453
## 360      23.180973  11.4386809 34.92327    5.2226870  41.13926
## 361      23.075659  10.9633214 35.18800    4.5514369  41.59988
## 362      22.970346  10.4841498 35.45654    3.8743570  42.06633
## 363      22.865032  10.0012050 35.72886    3.1915063  42.53856
## 364      22.759718   9.5145243 36.00491    2.5029421  43.01649
## 365      22.654405   9.0241441 36.28467    1.8087199  43.50009
## 366      22.549091   8.5300997 36.56808    1.1088939  43.98929
## 367      22.443778   8.0324254 36.85513    0.4035165  44.48404
## 368      22.338464   7.5311547 37.14577   -0.3073614  44.98429
## 369      22.233150   7.0263198 37.43998   -1.0236900  45.48999
## 370      22.127837   6.5179525 37.73772   -1.7454210  46.00109
## 371      22.022523   6.0060835 38.03896   -2.4725074  46.51755
## 372      21.917209   5.4907427 38.34368   -3.2049034  47.03932
## 373      21.811896   4.9719594 38.65183   -3.9425643  47.56636
## 374      21.706582   4.4497621 38.96340   -4.6854466  48.09861
## 375      21.601268   3.9241785 39.27836   -5.4335076  48.63604
## 376      21.495955   3.3952358 39.59667   -6.1867061  49.17862
## 377      21.390641   2.8629603 39.91832   -6.9450014  49.72628
## 378      21.285327   2.3273781 40.24328   -7.7083541  50.27901
## 379      21.180014   1.7885143 40.57151   -8.4767255  50.83675
## 380      21.074700   1.2463936 40.90301   -9.2500778  51.39948
## 381      20.969387   0.7010402 41.23773  -10.0283742  51.96715
## 382      20.864073   0.1524777 41.57567  -10.8115785  52.53972
## 383      20.758759  -0.3992709 41.91679  -11.5996555  53.11717
## 384      20.653446  -0.9541829 42.26107  -12.3925704  53.69946
## 385      20.548132  -1.5122361 42.60850  -13.1902896  54.28655
## 386      20.442818  -2.0734090 42.95905  -13.9927798  54.87842
## 387      20.337505  -2.6376804 43.31269  -14.8000087  55.47502
## 388      20.232191  -3.2050293 43.66941  -15.6119443  56.07633
## 389      20.126877  -3.7754354 44.02919  -16.4285555  56.68231
## 390      20.021564  -4.3488787 44.39201  -17.2498117  57.29294
## 391      19.916250  -4.9253397 44.75784  -18.0756830  57.90818
## 392      19.810937  -5.5047991 45.12667  -18.9061400  58.52801
## 393      19.705623  -6.0872381 45.49848  -19.7411539  59.15240
## 394      19.600309  -6.6726381 45.87326  -20.5806962  59.78131
## 395      19.494996  -7.2609809 46.25097  -21.4247393  60.41473
## 396      19.389682  -7.8522489 46.63161  -22.2732559  61.05262
## 397      19.284368  -8.4464243 47.01516  -23.1262192  61.69496
## 398      19.179055  -9.0434901 47.40160  -23.9836028  62.34171
## 399      19.073741  -9.6434293 47.79091  -24.8453810  62.99286
## 400      18.968427 -10.2462253 48.18308  -25.7115283  63.64838
## 401      18.863114 -10.8518619 48.57809  -26.5820198  64.30825
## 402      18.757800 -11.4603228 48.97592  -27.4568308  64.97243
## 403      18.652486 -12.0715925 49.37657  -28.3359374  65.64091
## 404      18.547173 -12.6856553 49.78000  -29.2193158  66.31366
## 405      18.441859 -13.3024960 50.18621  -30.1069426  66.99066
## 406      18.336546 -13.9220996 50.59519  -30.9987949  67.67189
## 407      18.231232 -14.5444514 51.00692  -31.8948500  68.35731
## 408      18.125918 -15.1695367 51.42137  -32.7950858  69.04692
## 409      18.020605 -15.7973413 51.83855  -33.6994804  69.74069
## 410      17.915291 -16.4278510 52.25843  -34.6080122  70.43859
## 411      17.809977 -17.0610521 52.68101  -35.5206600  71.14061
## 412      17.704664 -17.6969308 53.10626  -36.4374030  71.84673
## 413      17.599350 -18.3354738 53.53417  -37.3582205  72.55692
## 414      17.494036 -18.9766677 53.96474  -38.2830923  73.27117
## 415      17.388723 -19.6204995 54.39795  -39.2119984  73.98944
## 416      17.283409 -20.2669564 54.83377  -40.1449191  74.71174
## 417      17.178095 -20.9160256 55.27222  -41.0818352  75.43803
## 418      17.072782 -21.5676947 55.71326  -42.0227273  76.16829
## 419      16.967468 -22.2219513 56.15689  -42.9675768  76.90251
## 420      16.862155 -22.8787833 56.60309  -43.9163651  77.64067
## 421      16.756841 -23.5381788 57.05186  -44.8690737  78.38276
## 422      16.651527 -24.2001259 57.50318  -45.8256847  79.12874
## 423      16.546214 -24.8646129 57.95704  -46.7861803  79.87861
## 424      16.440900 -25.5316285 58.41343  -47.7505429  80.63234
## 425      16.335586 -26.2011611 58.87233  -48.7187551  81.38993
## 426      16.230273 -26.8731998 59.33375  -49.6907999  82.15135
## 427      16.124959 -27.5477334 59.79765  -50.6666603  82.91658
## 428      16.019645 -28.2247510 60.26404  -51.6463197  83.68561
## 429      15.914332 -28.9042419 60.73291  -52.6297617  84.45843
## 430      15.809018 -29.5861955 61.20423  -53.6169701  85.23501
## 431      15.703705 -30.2706013 61.67801  -54.6079288  86.01534
## 432      15.598391 -30.9574490 62.15423  -55.6026220  86.79940
## 433      15.493077 -31.6467283 62.63288  -56.6010340  87.58719
## 434      15.387764 -32.3384292 63.11396  -57.6031496  88.37868
## 435      15.282450 -33.0325417 63.59744  -58.6089533  89.17385
## 436      15.177136 -33.7290559 64.08333  -59.6184302  89.97270
## 437      15.071823 -34.4279622 64.57161  -60.6315655  90.77521
## 438      14.966509 -35.1292509 65.06227  -61.6483444  91.58136
## 439      14.861195 -35.8329126 65.55530  -62.6687524  92.39114
## 440      14.755882 -36.5389379 66.05070  -63.6927751  93.20454
## 441      14.650568 -37.2473174 66.54845  -64.7203985  94.02153
## 442      14.545254 -37.9580421 67.04855  -65.7516085  94.84212
## 443      14.439941 -38.6711029 67.55098  -66.7863912  95.66627
## 444      14.334627 -39.3864909 68.05575  -67.8247330  96.49399
## 445      14.229314 -40.1041972 68.56282  -68.8666204  97.32525
## 446      14.124000 -40.8242130 69.07221  -69.9120399  98.16004
## 447      14.018686 -41.5465298 69.58390  -70.9609784  98.99835
## 448      13.913373 -42.2711389 70.09788  -72.0134228  99.84017
## 449      13.808059 -42.9980320 70.61415  -73.0693601 100.68548
## 450      13.702745 -43.7272006 71.13269  -74.1287775 101.53427
## 451      13.597432 -44.4586364 71.65350  -75.1916625 102.38653
## 452      13.492118 -45.1923314 72.17657  -76.2580024 103.24224
## 453      13.386804 -45.9282774 72.70189  -77.3277850 104.10139
## 454      13.281491 -46.6664664 73.22945  -78.4009979 104.96398
## 455      13.176177 -47.4068904 73.75924  -79.4776291 105.82998
## 456      13.070863 -48.1495417 74.29127  -80.5576666 106.69939
## 457      12.965550 -48.8944124 74.82551  -81.6410984 107.57220
## 458      12.860236 -49.6414950 75.36197  -82.7279129 108.44839
## 459      12.754923 -50.3907817 75.90063  -83.8180984 109.32794
## 460      12.649609 -51.1422652 76.44148  -84.9116435 110.21086
## 461      12.544295 -51.8959379 76.98453  -86.0085367 111.09713
## 462      12.438982 -52.6517924 77.52976  -87.1087668 111.98673
## 463      12.333668 -53.4098215 78.07716  -88.2123226 112.87966
## 464      12.228354 -54.1700180 78.62673  -89.3191931 113.77590
## 465      12.123041 -54.9323747 79.17846  -90.4293674 114.67545
## 466      12.017727 -55.6968845 79.73234  -91.5428346 115.57829
## 467      11.912413 -56.4635404 80.28837  -92.6595839 116.48441
## 468      11.807100 -57.2323355 80.84654  -93.7796049 117.39380
## 469      11.701786 -58.0032629 81.40684  -94.9028869 118.30646
## 470      11.596473 -58.7763158 81.96926  -96.0294196 119.22236
## 471      11.491159 -59.5514874 82.53381  -97.1591926 120.14151
## 472      11.385845 -60.3287710 83.10046  -98.2921957 121.06389
## 473      11.280532 -61.1081602 83.66922  -99.4284188 121.98948
## 474      11.175218 -61.8896482 84.24008 -100.5678519 122.91829
## 475      11.069904 -62.6732285 84.81304 -101.7104850 123.85029
## 476      10.964591 -63.4588949 85.38808 -102.8563083 124.78549
## 477      10.859277 -64.2466408 85.96519 -104.0053121 125.72387
## 478      10.753963 -65.0364600 86.54439 -105.1574866 126.66541
## 479      10.648650 -65.8283462 87.12565 -106.3128223 127.61012
## 480      10.543336 -66.6222931 87.70897 -107.4713098 128.55798
## 481      10.438022 -67.4182948 88.29434 -108.6329395 129.50898
## 482      10.332709 -68.2163449 88.88176 -109.7977022 130.46312
## 483      10.227395 -69.0164376 89.47123 -110.9655887 131.42038
## 484      10.122082 -69.8185668 90.06273 -112.1365898 132.38075
## 485      10.016768 -70.6227266 90.65626 -113.3106964 133.34423
## 486       9.911454 -71.4289111 91.25182 -114.4878995 134.31081
## 487       9.806141 -72.2371144 91.84940 -115.6681901 135.28047
## 488       9.700827 -73.0473308 92.44898 -116.8515596 136.25321
## 489       9.595513 -73.8595546 93.05058 -118.0379990 137.22903
## 490       9.490200 -74.6737801 93.65418 -119.2274997 138.20790
## 491       9.384886 -75.4900016 94.25977 -120.4200531 139.18983
## 492       9.279572 -76.3082135 94.86736 -121.6156506 140.17480
## 493       9.174259 -77.1284104 95.47693 -122.8142838 141.16280
## 494       9.068945 -77.9505866 96.08848 -124.0159442 142.15383
## 495       8.963632 -78.7747368 96.70200 -125.2206235 143.14789
## 496       8.858318 -79.6008556 97.31749 -126.4283134 144.14495
## 497       8.753004 -80.4289375 97.93495 -127.6390057 145.14501
## 498       8.647691 -81.2589773 98.55436 -128.8526924 146.14807
## 499       8.542377 -82.0909697 99.17572 -130.0693653 147.15412
## 500       8.437063 -82.9249095 99.79904 -131.2890164 148.16314

Selanjutnya jika ingin membandingkan plot data latih dan data uji adalah sebagai berikut.

#Visually evaluate the prediction
plot(data.ts)
lines(des.1$fitted[,1], lty=2, col="blue")
lines(ramalandes1$mean, col="red")

Untuk mendapatkan nilai parameter optimum dari DES, argumen alpha dan beta dapat dibuat NULL seperti berikut.

#Lamda dan gamma optimum
des.opt<- HoltWinters(train.ts, gamma = FALSE)
des.opt
## Holt-Winters exponential smoothing with trend and without seasonal component.
## 
## Call:
## HoltWinters(x = train.ts, gamma = FALSE)
## 
## Smoothing parameters:
##  alpha: 1
##  beta : 0.04376793
##  gamma: FALSE
## 
## Coefficients:
##          [,1]
## a 27.89310000
## b -0.04570657
plot(des.opt)

#ramalan
ramalandesopt<- forecast(des.opt, h=185)
ramalandesopt
##     Point Forecast      Lo 80    Hi 80        Lo 95    Hi 95
## 316       27.84739 27.5420464 28.15274  27.38040550 28.31438
## 317       27.80169 27.3603098 28.24306  27.12665884 28.47671
## 318       27.75598 27.2036325 28.30833  26.91123724 28.60072
## 319       27.71027 27.0588008 28.36175  26.71393180 28.70662
## 320       27.66457 26.9208214 28.40831  26.52710615 28.80203
## 321       27.61886 26.7871951 28.45053  26.34693791 28.89078
## 322       27.57315 26.6564733 28.48983  26.17121180 28.97510
## 323       27.52745 26.5277360 28.52716  25.99852066 29.05637
## 324       27.48174 26.4003606 28.56312  25.82791252 29.13557
## 325       27.43603 26.2739064 28.59816  25.65871305 29.21336
## 326       27.39033 26.1480498 28.63261  25.49042763 29.29023
## 327       27.34462 26.0225471 28.66670  25.32268335 29.36656
## 328       27.29891 25.8972103 28.70062  25.15519291 29.44264
## 329       27.25321 25.7718922 28.73452  24.98773097 29.51869
## 330       27.20750 25.6464754 28.76853  24.82011816 29.59488
## 331       27.16179 25.5208655 28.80272  24.65221000 29.67138
## 332       27.11609 25.3949857 28.83719  24.48388893 29.74829
## 333       27.07038 25.2687727 28.87199  24.31505843 29.82571
## 334       27.02468 25.1421745 28.90718  24.14563878 29.90371
## 335       26.97897 25.0151477 28.94279  23.97556366 29.98237
## 336       26.93326 24.8876561 28.97887  23.80477774 30.06175
## 337       26.88756 24.7596694 29.01544  23.63323458 30.14188
## 338       26.84185 24.6311621 29.05254  23.46089518 30.22280
## 339       26.79614 24.5021127 29.09017  23.28772669 30.30456
## 340       26.75044 24.3725030 29.12837  23.11370142 30.38717
## 341       26.70473 24.2423178 29.16714  22.93879600 30.47066
## 342       26.65902 24.1115443 29.20650  22.76299078 30.55505
## 343       26.61332 23.9801717 29.24646  22.58626922 30.64036
## 344       26.56761 23.8481908 29.28703  22.40861748 30.72660
## 345       26.52190 23.7155942 29.32821  22.23002401 30.81378
## 346       26.47620 23.5823755 29.37002  22.05047925 30.90191
## 347       26.43049 23.4485297 29.41245  21.86997535 30.99100
## 348       26.38478 23.3140526 29.45551  21.68850594 31.08106
## 349       26.33908 23.1789408 29.49921  21.50606595 31.17209
## 350       26.29337 23.0431919 29.54355  21.32265143 31.26409
## 351       26.24766 22.9068038 29.58852  21.13825942 31.35707
## 352       26.20196 22.7697751 29.63414  20.95288780 31.45103
## 353       26.15625 22.6321051 29.68040  20.76653523 31.54597
## 354       26.11054 22.4937932 29.72729  20.57920100 31.64189
## 355       26.06484 22.3548393 29.77484  20.39088500 31.73879
## 356       26.01913 22.2152437 29.82302  20.20158763 31.83667
## 357       25.97342 22.0750070 29.87184  20.01130970 31.93554
## 358       25.92772 21.9341300 29.92131  19.82005247 32.03538
## 359       25.88201 21.7926137 29.97141  19.62781750 32.13620
## 360       25.83630 21.6504593 30.02215  19.43460667 32.23800
## 361       25.79060 21.5076682 30.07353  19.24042214 32.34077
## 362       25.74489 21.3642420 30.12554  19.04526628 32.44452
## 363       25.69918 21.2201823 30.17819  18.84914169 32.54923
## 364       25.65348 21.0754911 30.23147  18.65205114 32.65491
## 365       25.60777 20.9301702 30.28537  18.45399755 32.76155
## 366       25.56207 20.7842215 30.33991  18.25498398 32.86915
## 367       25.51636 20.6376473 30.39507  18.05501362 32.97770
## 368       25.47065 20.4904496 30.45085  17.85408976 33.08721
## 369       25.42495 20.3426306 30.50726  17.65221577 33.19767
## 370       25.37924 20.1941927 30.56428  17.44939511 33.30908
## 371       25.33353 20.0451380 30.62193  17.24563130 33.42143
## 372       25.28783 19.8954690 30.68018  17.04092790 33.53472
## 373       25.24212 19.7451880 30.73905  16.83528853 33.64895
## 374       25.19641 19.5942974 30.79853  16.62871686 33.76411
## 375       25.15071 19.4427996 30.85861  16.42121656 33.88020
## 376       25.10500 19.2906970 30.91930  16.21279134 33.99721
## 377       25.05929 19.1379921 30.98059  16.00344494 34.11514
## 378       25.01359 18.9846873 31.04249  15.79318108 34.23399
## 379       24.96788 18.8307851 31.10497  15.58200352 34.35376
## 380       24.92217 18.6762879 31.16806  15.36991601 34.47443
## 381       24.87647 18.5211981 31.23173  15.15692229 34.59601
## 382       24.83076 18.3655183 31.29600  14.94302611 34.71849
## 383       24.78505 18.2092508 31.36086  14.72823120 34.84188
## 384       24.73935 18.0523981 31.42630  14.51254131 34.96615
## 385       24.69364 17.8949626 31.49232  14.29596014 35.09132
## 386       24.64793 17.7369468 31.55892  14.07849139 35.21738
## 387       24.60223 17.5783531 31.62610  13.86013876 35.34432
## 388       24.55652 17.4191838 31.69386  13.64090591 35.47214
## 389       24.51081 17.2594413 31.76219  13.42079649 35.60083
## 390       24.46511 17.0991280 31.83109  13.19981413 35.73040
## 391       24.41940 16.9382464 31.90056  12.97796243 35.86084
## 392       24.37369 16.7767986 31.97059  12.75524498 35.99214
## 393       24.32799 16.6147871 32.04119  12.53166534 36.12431
## 394       24.28228 16.4522141 32.11235  12.30722703 36.25734
## 395       24.23657 16.2890820 32.18407  12.08193358 36.39122
## 396       24.19087 16.1253930 32.25634  11.85578846 36.52595
## 397       24.14516 15.9611494 32.32917  11.62879513 36.66153
## 398       24.09945 15.7963534 32.40256  11.40095702 36.79795
## 399       24.05375 15.6310073 32.47649  11.17227754 36.93522
## 400       24.00804 15.4651132 32.55097  10.94276005 37.07332
## 401       23.96234 15.2986734 32.62600  10.71240790 37.21226
## 402       23.91663 15.1316900 32.70157  10.48122442 37.35203
## 403       23.87092 14.9641651 32.77768  10.24921288 37.49263
## 404       23.82522 14.7961010 32.85433  10.01637657 37.63405
## 405       23.77951 14.6274997 32.93152   9.78271870 37.77630
## 406       23.73380 14.4583633 33.00924   9.54824249 37.91936
## 407       23.68810 14.2886939 33.08750   9.31295112 38.06324
## 408       23.64239 14.1184935 33.16628   9.07684772 38.20793
## 409       23.59668 13.9477643 33.24560   8.83993543 38.35343
## 410       23.55098 13.7765081 33.32544   8.60221734 38.49973
## 411       23.50527 13.6047271 33.40581   8.36369651 38.64684
## 412       23.45956 13.4324231 33.48670   8.12437598 38.79475
## 413       23.41386 13.2595983 33.56811   7.88425876 38.94345
## 414       23.36815 13.0862544 33.65005   7.64334784 39.09295
## 415       23.32244 12.9123935 33.73249   7.40164616 39.24324
## 416       23.27674 12.7380175 33.81546   7.15915665 39.39432
## 417       23.23103 12.5631283 33.89893   6.91588223 39.54618
## 418       23.18532 12.3877277 33.98292   6.67182575 39.69882
## 419       23.13962 12.2118176 34.06742   6.42699008 39.85224
## 420       23.09391 12.0353999 34.15242   6.18137803 40.00644
## 421       23.04820 11.8584763 34.23793   5.93499239 40.16142
## 422       23.00250 11.6810487 34.32395   5.68783595 40.31716
## 423       22.95679 11.5031190 34.41046   5.43991143 40.47367
## 424       22.91108 11.3246888 34.49748   5.19122157 40.63095
## 425       22.86538 11.1457599 34.58500   4.94176906 40.78899
## 426       22.81967 10.9663341 34.67301   4.69155657 40.94779
## 427       22.77396 10.7864131 34.76152   4.44058674 41.10734
## 428       22.72826 10.6059986 34.85052   4.18886220 41.26765
## 429       22.68255 10.4250923 34.94001   3.93638553 41.42872
## 430       22.63684 10.2436960 35.02999   3.68315933 41.59053
## 431       22.59114 10.0618112 35.12046   3.42918614 41.75309
## 432       22.54543  9.8794396 35.21142   3.17446848 41.91639
## 433       22.49972  9.6965829 35.30287   2.91900886 42.08044
## 434       22.45402  9.5132426 35.39479   2.66280976 42.24523
## 435       22.40831  9.3294205 35.48720   2.40587365 42.41075
## 436       22.36261  9.1451180 35.58009   2.14820296 42.57701
## 437       22.31690  8.9603368 35.67346   1.88980011 42.74400
## 438       22.27119  8.7750785 35.76731   1.63066748 42.91172
## 439       22.22549  8.5893445 35.86163   1.37080747 43.08016
## 440       22.17978  8.4031364 35.95642   1.11022241 43.24934
## 441       22.13407  8.2164558 36.05169   0.84891464 43.41923
## 442       22.08837  8.0293042 36.14743   0.58688647 43.58985
## 443       22.04266  7.8416830 36.24364   0.32414020 43.76118
## 444       21.99695  7.6535937 36.34031   0.06067808 43.93323
## 445       21.95125  7.4650378 36.43745  -0.20349762 44.10599
## 446       21.90554  7.2760168 36.53506  -0.46838467 44.27946
## 447       21.85983  7.0865322 36.63313  -0.73398086 44.45365
## 448       21.81413  6.8965853 36.73167  -1.00028401 44.62854
## 449       21.76842  6.7061775 36.83066  -1.26729192 44.80413
## 450       21.72271  6.5153104 36.93012  -1.53500246 44.98043
## 451       21.67701  6.3239852 37.03003  -1.80341347 45.15743
## 452       21.63130  6.1322034 37.13040  -2.07252284 45.33512
## 453       21.58559  5.9399663 37.23122  -2.34232847 45.51352
## 454       21.53989  5.7472753 37.33250  -2.61282828 45.69260
## 455       21.49418  5.5541318 37.43423  -2.88402019 45.87238
## 456       21.44847  5.3605371 37.53641  -3.15590217 46.05285
## 457       21.40277  5.1664925 37.63904  -3.42847216 46.23401
## 458       21.35706  4.9719994 37.74212  -3.70172817 46.41585
## 459       21.31135  4.7770590 37.84565  -3.97566819 46.59838
## 460       21.26565  4.5816726 37.94962  -4.25029024 46.78159
## 461       21.21994  4.3858416 38.05404  -4.52559235 46.96547
## 462       21.17423  4.1895672 38.15890  -4.80157257 47.15004
## 463       21.12853  3.9928506 38.26421  -5.07822898 47.33528
## 464       21.08282  3.7956932 38.36995  -5.35555964 47.52120
## 465       21.03711  3.5980962 38.47613  -5.63356265 47.70779
## 466       20.99141  3.4000607 38.58276  -5.91223613 47.89505
## 467       20.94570  3.2015881 38.68982  -6.19157821 48.08298
## 468       20.90000  3.0026795 38.79731  -6.47158702 48.27158
## 469       20.85429  2.8033362 38.90524  -6.75226072 48.46084
## 470       20.80858  2.6035593 39.01360  -7.03359749 48.65076
## 471       20.76288  2.4033501 39.12240  -7.31559551 48.84135
## 472       20.71717  2.2027097 39.23163  -7.59825297 49.03259
## 473       20.67146  2.0016392 39.34129  -7.88156809 49.22449
## 474       20.62576  1.8001399 39.45137  -8.16553910 49.41705
## 475       20.58005  1.5982129 39.56189  -8.45016424 49.61026
## 476       20.53434  1.3958593 39.67283  -8.73544176 49.80413
## 477       20.48864  1.1930802 39.78419  -9.02136994 49.99864
## 478       20.44293  0.9898769 39.89598  -9.30794704 50.19381
## 479       20.39722  0.7862503 40.00820  -9.59517137 50.38962
## 480       20.35152  0.5822017 40.12083  -9.88304124 50.58607
## 481       20.30581  0.3777321 40.23389 -10.17155495 50.78317
## 482       20.26010  0.1728426 40.34736 -10.46071086 50.98092
## 483       20.21440 -0.0324658 40.46126 -10.75050728 51.17930
## 484       20.16869 -0.2381919 40.57557 -11.04094260 51.37832
## 485       20.12298 -0.4443347 40.69030 -11.33201517 51.57798
## 486       20.07728 -0.6508931 40.80545 -11.62372337 51.77828
## 487       20.03157 -0.8578660 40.92101 -11.91606561 51.97921
## 488       19.98586 -1.0652525 41.03698 -12.20904027 52.18077
## 489       19.94016 -1.2730515 41.15337 -12.50264579 52.38296
## 490       19.89445 -1.4812619 41.27016 -12.79688058 52.58578
## 491       19.84874 -1.6898828 41.38737 -13.09174309 52.78923
## 492       19.80304 -1.8989131 41.50499 -13.38723176 52.99331
## 493       19.75733 -2.1083518 41.62301 -13.68334506 53.19801
## 494       19.71162 -2.3181980 41.74145 -13.98008146 53.40333
## 495       19.66592 -2.5284506 41.86029 -14.27743944 53.60927
## 496       19.62021 -2.7391086 41.97953 -14.57541750 53.81584
## 497       19.57450 -2.9501711 42.09918 -14.87401414 54.02302
## 498       19.52880 -3.1616371 42.21923 -15.17322787 54.23082
## 499       19.48309 -3.3735056 42.33969 -15.47305722 54.43924
## 500       19.43738 -3.5857757 42.46055 -15.77350072 54.64827

Selanjutnya akan dilakukan perhitungan akurasi pada data latih maupun data uji dengan ukuran akurasi SSE, MSE dan MAPE.

Akurasi Data Latih

#Akurasi Data Training
ssedes.train1<-des.1$SSE
msedes.train1<-ssedes.train1/length(train.ts)
sisaandes1<-ramalandes1$residuals
head(sisaandes1)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]         NA         NA  0.0712000  0.0356120 -0.3681829 -0.9269915
mapedes.train1 <- sum(abs(sisaandes1[3:length(train.ts)]/train.ts[3:length(train.ts)])
                      *100)/length(train.ts)

akurasides.1 <- matrix(c(ssedes.train1,msedes.train1,mapedes.train1))
row.names(akurasides.1)<- c("SSE", "MSE", "MAPE")
colnames(akurasides.1) <- c("Akurasi lamda=0.2 dan gamma=0.2")
akurasides.1
##      Akurasi lamda=0.2 dan gamma=0.2
## SSE                       54.1103299
## MSE                        0.1717788
## MAPE                       1.1003918
ssedes.train2<-des.2$SSE
msedes.train2<-ssedes.train2/length(train.ts)
sisaandes2<-ramalandes2$residuals
head(sisaandes2)
## Time Series:
## Start = 1 
## End = 6 
## Frequency = 1 
## [1]         NA         NA  0.0712000 -0.0028360 -0.4058399 -0.7444903
mapedes.train2 <- sum(abs(sisaandes2[3:length(train.ts)]/train.ts[3:length(train.ts)])
                      *100)/length(train.ts)

akurasides.2 <- matrix(c(ssedes.train2,msedes.train2,mapedes.train2))
row.names(akurasides.2)<- c("SSE", "MSE", "MAPE")
colnames(akurasides.2) <- c("Akurasi lamda=0.6 dan gamma=0.3")
akurasides.2
##      Akurasi lamda=0.6 dan gamma=0.3
## SSE                      22.16436202
## MSE                       0.07036305
## MAPE                      0.68015984

Hasil akurasi dari data latih didapatkan skenario 2 dengan lamda=0.6 dan gamma=0.3 memiliki hasil yang lebih baik. Namun untuk kedua skenario dapat dikategorikan peramalan sangat baik berdasarkan nilai MAPE-nya.

Akurasi Data Uji

#Akurasi Data Testing
selisihdes1<-ramalandes1$mean-testing$temperature
selisihdes1
## Time Series:
## Start = 316 
## End = 500 
## Frequency = 1 
##   [1]  -0.1581283  -0.3951094  -0.5057906  -0.5996717  -0.7390528  -0.1806340
##   [7]  -0.9296151  -1.1184963  -1.0517774  -0.9406586  -0.9944397  -1.1767209
##  [13]  -1.1204020  -0.9952832  -0.7306643  -0.9497455  -0.9194266  -0.9572078
##  [19]  -0.9509889  -0.9470700  -0.9087512  -1.0473323  -1.3323135  -1.5344946
##  [25]  -1.5947758  -1.4707569  -1.5299381  -1.2745192  -1.2996004  -1.4180815
##  [31]  -1.5263627  -1.6030438  -1.7854250  -1.8196061  -1.9008872  -1.8454684
##  [37]  -1.9878495  -2.0808307  -2.1226118  -1.9102930  -1.9273741  -2.0572553
##  [43]  -2.0805364  -1.9826176  -1.9707987  -2.0495799  -2.0975610  -2.1887422
##  [49]  -2.0444233  -2.2536044  -2.3956856  -2.4592667  -2.4102479  -2.3496290
##  [55]  -2.3737102  -2.5779913  -2.5348725  -2.4824536  -2.4251348  -2.3317159
##  [61]  -2.3426971  -2.3854782  -2.5174593  -2.5636405  -2.4856216  -2.3678028
##  [67]  -2.2793839  -2.4969651  -2.7964462  -2.9220274  -2.7161085  -2.6850897
##  [73]  -2.9342708  -2.9833520  -3.0139331  -2.7921143  -2.8851954  -2.9257765
##  [79]  -2.9976577  -2.9757388  -2.7498200  -2.9702011  -3.1457823  -3.1311634
##  [85]  -3.2594446  -3.4803257  -3.5668069  -3.6707880  -3.4923692  -3.6903503
##  [91]  -3.7915315  -3.8565126  -3.7987937  -3.6349749  -3.8631560  -4.0086372
##  [97]  -3.9829183  -4.2145995  -4.4513806  -4.4323618  -4.2877429  -4.0228241
## [103]  -4.5621052  -4.7995864  -5.1658675  -5.3794487  -5.3736298  -5.5082109
## [109]  -5.5563921  -5.5585732  -5.1542544  -5.3783355  -5.2318167  -5.3876978
## [115]  -5.5947790  -5.9283601  -6.0340413  -6.1681224  -6.3074036  -6.2438847
## [121]  -6.2854659  -6.3791470  -6.3921281  -6.4968093  -6.7117904  -6.6707716
## [127]  -6.5856527  -6.3034339  -6.6079150  -6.9483962  -7.2149773  -7.3978585
## [133]  -7.4802396  -7.4713208  -7.3575019  -7.3153831  -7.0068642  -7.3554453
## [139]  -7.6855265  -7.7526076  -8.0465888  -8.1174699  -8.1126511  -8.0742322
## [145]  -7.9594134  -8.0857945  -8.1119757  -7.6562568  -8.0240380  -8.1902191
## [151]  -7.9379003  -7.9816814  -8.2155625  -8.4178437  -8.3920248  -8.2095060
## [157]  -7.7562871  -8.0669683  -7.8982494  -8.0517306  -8.2313117  -8.2022929
## [163]  -8.1055740  -8.3883552  -8.2623363  -8.3876175  -8.5316986  -8.8343797
## [169]  -9.0408609  -9.2348420  -9.3583232  -9.2960043  -9.3593855  -9.5755666
## [175]  -9.5325478  -9.6701289  -9.8484101  -9.9355912  -9.9831724 -10.0014535
## [181]  -9.4999347  -9.0761158  -8.5374969  -8.6891781  -9.7385592
SSEtestingdes1<-sum(selisihdes1^2)
MSEtestingdes1<-SSEtestingdes1/length(testing$temperature)
MAPEtestingdes1<-sum(abs(selisihdes1/testing$temperature)*100)/length(testing$temperature)

selisihdes2<-ramalandes2$mean-testing$temperature
selisihdes2
## Time Series:
## Start = 316 
## End = 500 
## Frequency = 1 
##   [1]  -0.2457268  -0.5401404  -0.7082541  -0.8595677  -1.0563813  -0.5553950
##   [7]  -1.3618086  -1.6081223  -1.5988359  -1.5451496  -1.6563632  -1.8960768
##  [13]  -1.8971905  -1.8295041  -1.6223178  -1.8988314  -1.9259450  -2.0211587
##  [19]  -2.0723723  -2.1258860  -2.1449996  -2.3410132  -2.6834269  -2.9430405
##  [25]  -3.0607542  -2.9941678  -3.1107814  -2.9127951  -2.9953087  -3.1712224
##  [31]  -3.3369360  -3.4710497  -3.7108633  -3.8024769  -3.9411906  -3.9432042
##  [37]  -4.1430179  -4.2934315  -4.3926451  -4.2377588  -4.3122724  -4.4995861
##  [43]  -4.5802997  -4.5398133  -4.5854270  -4.7216406  -4.8270543  -4.9756679
##  [49]  -4.8887815  -5.1553952  -5.3549088  -5.4759225  -5.4843361  -5.4811498
##  [55]  -5.5626634  -5.8243770  -5.8386907  -5.8437043  -5.8438180  -5.8078316
##  [61]  -5.8762452  -5.9764589  -6.1658725  -6.2694862  -6.2488998  -6.1885134
##  [67]  -6.1575271  -6.4325407  -6.7894544  -6.9724680  -6.8239816  -6.8503953
##  [73]  -7.1570089  -7.2635226  -7.3515362  -7.1871498  -7.3376635  -7.4356771
##  [79]  -7.5649908  -7.6005044  -7.4320181  -7.7098317  -7.9428453  -7.9856590
##  [85]  -8.1713726  -8.4496863  -8.5935999  -8.7550135  -8.6340272  -8.8894408
##  [91]  -9.0480545  -9.1704681  -9.1701817  -9.0637954  -9.3494090  -9.5523227
##  [97]  -9.5840363  -9.8731499 -10.1673636 -10.2057772 -10.1185909  -9.9111045
## [103] -10.5078182 -10.8027318 -11.2264454 -11.4974591 -11.5490727 -11.7410864
## [109] -11.8467000 -11.9063136 -11.5594273 -11.8409409 -11.7518546 -11.9651682
## [115] -12.2296818 -12.6206955 -12.7838091 -12.9753228 -13.1720364 -13.1659500
## [121] -13.2649637 -13.4160773 -13.4864910 -13.6486046 -13.9210183 -13.9374319
## [127] -13.9097455 -13.6849592 -14.0468728 -14.4447865 -14.7688001 -15.0091137
## [133] -15.1489274 -15.1974410 -15.1410547 -15.1563683 -14.9052819 -15.3112956
## [139] -15.6988092 -15.8233229 -16.1747365 -16.3030501 -16.3556638 -16.3746774
## [145] -16.3172911 -16.5011047 -16.5847183 -16.1864320 -16.6116456 -16.8352593
## [151] -16.6403729 -16.7415866 -17.0329002 -17.2926138 -17.3242275 -17.1991411
## [157] -16.8033548 -17.1714684 -17.0601820 -17.2710957 -17.5081093 -17.5365230
## [163] -17.4972366 -17.8374502 -17.7688639 -17.9515775 -18.1530912 -18.5132048
## [169] -18.7771184 -19.0285321 -19.2094457 -19.2045594 -19.3253730 -19.5989867
## [175] -19.6134003 -19.8084139 -20.0441276 -20.1887412 -20.2937549 -20.3694685
## [181] -19.9253821 -19.5589958 -19.0778094 -19.2869231 -20.3937367
SSEtestingdes2<-sum(selisihdes2^2)
MSEtestingdes2<-SSEtestingdes2/length(testing$temperature)
MAPEtestingdes2<-sum(abs(selisihdes2/testing$temperature)*100)/length(testing$temperature)

selisihdesopt<-ramalandesopt$mean-testing$temperature
selisihdesopt
## Time Series:
## Start = 316 
## End = 500 
## Frequency = 1 
##   [1] -0.2131066 -0.4479131 -0.5564197 -0.6481263 -0.7853328 -0.2247394
##   [7] -0.9715460 -1.1582525 -1.0893591 -0.9760657 -1.0276723 -1.2077788
##  [13] -1.1492854 -1.0219920 -0.7551985 -0.9721051 -0.9396117 -0.9752182
##  [19] -0.9668248 -0.9607314 -0.9202379 -1.0566445 -1.3394511 -1.5394576
##  [25] -1.5975642 -1.4713708 -1.5283773 -1.2707839 -1.2936905 -1.4099970
##  [31] -1.5161036 -1.5906102 -1.7708168 -1.8028233 -1.8819299 -1.8243365
##  [37] -1.9645430 -2.0553496 -2.0949562 -1.8804627 -1.8953693 -2.0230759
##  [43] -2.0441824 -1.9440890 -1.9300956 -2.0067021 -2.0525087 -2.1415153
##  [49] -1.9950218 -2.2020284 -2.3419350 -2.4033416 -2.3521481 -2.2893547
##  [55] -2.3112613 -2.5133678 -2.4680744 -2.4134810 -2.3539875 -2.2583941
##  [61] -2.2672007 -2.3078072 -2.4376138 -2.4816204 -2.4014269 -2.2814335
##  [67] -2.1908401 -2.4062466 -2.7035532 -2.8269598 -2.6188663 -2.5856729
##  [73] -2.8326795 -2.8795861 -2.9079926 -2.6839992 -2.7749058 -2.8133123
##  [79] -2.8830189 -2.8589255 -2.6308320 -2.8490386 -3.0224452 -3.0056517
##  [85] -3.1317583 -3.3504649 -3.4347714 -3.5365780 -3.3559846 -3.5517911
##  [91] -3.6507977 -3.7136043 -3.6537109 -3.4877174 -3.7137240 -3.8570306
##  [97] -3.8291371 -4.0586437 -4.2932503 -4.2720568 -4.1252634 -3.8581700
## [103] -4.3952765 -4.6305831 -4.9946897 -5.2060962 -5.1981028 -5.3305094
## [109] -5.3765159 -5.3765225 -4.9700291 -5.1919356 -5.0432422 -5.1969488
## [115] -5.4018554 -5.7332619 -5.8367685 -5.9686751 -6.1057816 -6.0400882
## [121] -6.0794948 -6.1710013 -6.1818079 -6.2843145 -6.4971210 -6.4539276
## [127] -6.3666342 -6.0822407 -6.3845473 -6.7228539 -6.9872604 -7.1679670
## [133] -7.2481736 -7.2370802 -7.1210867 -7.0767933 -6.7660999 -7.1125064
## [139] -7.4404130 -7.5053196 -7.7971261 -7.8658327 -7.8588393 -7.8182458
## [145] -7.7012524 -7.8254590 -7.8494655 -7.3915721 -7.7571787 -7.9211852
## [151] -7.6666918 -7.7082984 -7.9400049 -8.1401115 -8.1121181 -7.9274247
## [157] -7.4720312 -7.7805378 -7.6096444 -7.7609509 -7.9383575 -7.9071641
## [163] -7.8082706 -8.0888772 -7.9606838 -8.0837903 -8.2256969 -8.5262035
## [169] -8.7305100 -8.9223166 -9.0436232 -8.9791297 -9.0403363 -9.2543429
## [175] -9.2091495 -9.3445560 -9.5206626 -9.6056692 -9.6510757 -9.6671823
## [181] -9.1634889 -8.7374954 -8.1967020 -8.3462086 -9.3934151
SSEtestingdesopt<-sum(selisihdesopt^2)
MSEtestingdesopt<-SSEtestingdesopt/length(testing$temperature)
MAPEtestingdesopt<-sum(abs(selisihdesopt/testing$temperature)*100)/length(testing$temperature)

akurasitestingdes <-
  matrix(c(SSEtestingdes1,MSEtestingdes1,MAPEtestingdes1,SSEtestingdes2,MSEtestingdes2,
           MAPEtestingdes2,SSEtestingdesopt,MSEtestingdesopt,MAPEtestingdesopt),
         nrow=3,ncol=3)
row.names(akurasitestingdes)<- c("SSE", "MSE", "MAPE")
colnames(akurasitestingdes) <- c("des ske1","des ske2","des opt")
akurasitestingdes
##        des ske1    des ske2    des opt
## SSE  5530.72677 25052.30650 5165.79518
## MSE    29.89582   135.41787   27.92322
## MAPE   16.31984    35.31179   15.80811

Diperoleh yang paling bagus (dari nilai SSE, MSE, dan MAPE yang paling kecil) menggunakan fungsi optimum yaitu DES dengan nilai alpha = 1 dan beta = 0.04376

Perbandingan SES dan DES

MSEfull <-
  matrix(c(MSEtesting1,MSEtesting2,MSEtestingopt,MSEtestingdes1,MSEtestingdes2,
           MSEtestingdesopt),nrow=3,ncol=2)
row.names(MSEfull)<- c("ske 1", "ske 2", "ske opt")
colnames(MSEfull) <- c("ses","des")
MSEfull
##              ses       des
## ske 1   36.75161  29.89582
## ske 2   39.52752 135.41787
## ske opt 40.92966  27.92322

Kedua metode dapat dibandingkan dengan menggunakan ukuran akurasi yang sama. Contoh di atas adalah perbandingan kedua metode dengan ukuran akurasi MSE. Hasilnya didapatkan metode DES cenderung lebih baik dibandingkan metode SES dilihat dari MSE yang lebih kecil nilainya.