# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("MCD", "ISRG", "KHC", "FIS", "GOOG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "FIS" "GOOG" "ISRG" "KHC" "MCD"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 FIS 0.25
## 2 GOOG 0.25
## 3 ISRG 0.2
## 4 KHC 0.2
## 5 MCD 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0719
## 2 2013-02-28 -0.00415
## 3 2013-03-28 0.00839
## 4 2013-04-30 0.0271
## 5 2013-05-31 0.0274
## 6 2013-06-28 -0.00198
## 7 2013-07-31 -0.0501
## 8 2013-08-30 -0.00818
## 9 2013-09-30 0.0171
## 10 2013-10-31 0.0506
## # ℹ 50 more rows
portfolio_returns_tbl %>%
tq_performance(Ra = returns,
Rb = NULL,
performance_fun = table.Stats) %>%
select(Skewness)
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 0.478
# Figure 5.6 Asset and portfolio skewness comparison ----
asset_returns_skew_tbl <- asset_returns_tbl %>%
# skewness for each asset
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# skewness of portfolio
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_returns_skew_tbl %>%
ggplot(aes(asset, skew, color = asset)) +
geom_point() +
# Add label for portfolio
ggrepel::geom_text_repel(aes(label = asset),
data = asset_returns_skew_tbl %>%
filter(asset == "Portfolio"),
size = 5,
show.legend = FALSE) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively?
Among the assets in the portfolio, GOOG shows a skewness of roughly 0.75, indicating a greater likelihood of generating extreme positive returns compared to the overall portfolio skewness of roughly 0.5. While MCD matches the portfolio’s skewness, suggesting an equal likelihood of extreme positive returns, the other assets, particularly FIS and ISRG, show negative skewness, indicating a higher risk of extreme negative returns. Using this information I would say only GOOG is more likely to outperform the portfolio in terms of extreme positive returns.