Environment Setup

# Clear the workspace
rm(list = ls()) # Clear environment
gc()            # Clear unused memory
cat("\f")       # Clear the console
dev.off         # Clear the charts
#List all required packages
packages <- c("plm", 
              "tidyverse", 
              "dplyr", 
              "ggplot2", 
              "kableExtra", 
              "scales", 
              "psych", 
              "reshape2", 
              "corrplot",
              "gridExtra", 
              "car",
              "stargazer"
              ) 

for (i in 1:length(packages)) {
  if (!packages[i] %in% rownames(installed.packages())) {
    install.packages(packages[i]
                     , repos = "http://cran.rstudio.com/"
                     , dependencies = TRUE
                     )
  }
  library(packages[i], character.only = TRUE)
}

rm(packages)

Part 1

# Set working directory (replace with your actual path)
setwd("~/Desktop/")

# Load Guns Dataset
guns <- read_csv("Guns-1.csv")

# Display sample of data
kable(head(guns), caption = "Guns Dataset")
Guns Dataset
year violent murder robbery prisoners afam cauc male population income density state law
1977 414.4 14.2 96.8 83 8.384873 55.12291 18.17441 3.780403 9563.148 0.0745524 Alabama no
1978 419.1 13.3 99.1 94 8.352101 55.14367 17.99408 3.831838 9932.000 0.0755667 Alabama no
1979 413.3 13.2 109.5 144 8.329575 55.13586 17.83934 3.866248 9877.028 0.0762453 Alabama no
1980 448.5 13.2 132.1 141 8.408386 54.91259 17.73420 3.900368 9541.428 0.0768288 Alabama no
1981 470.5 11.9 126.5 149 8.483435 54.92513 17.67372 3.918531 9548.351 0.0771866 Alabama no
1982 447.7 10.6 112.0 183 8.514000 54.89621 17.51052 3.925229 9478.919 0.0773185 Alabama no
# Converting to panel data format
guns_panel <- pdata.frame(guns, index = c("state", "year"))

# Check if the dataset is balanced
is_balanced <- is.pbalanced(guns_panel)
print(is_balanced)  # TRUE
## [1] TRUE
# Converting to panel data format
guns_panel <- pdata.frame(guns, index = c("state", "year"))

# Check if the dataset is balanced
is_balanced <- is.pbalanced(guns_panel)
print(is_balanced)  # TRUE
## [1] TRUE

Part 2

OLS model

\[ \text{Violent Crime Rate}_i = \beta_0 + \beta_1 \cdot \text{Law}_i + \beta_2 \cdot \text{Prisoners}_i + \beta_3 \cdot \text{Income}_i + \beta_4 \cdot \text{Population}_i + \beta_5 \cdot \text{Male}_i + \beta_6 \cdot \text{Afam}_i + \beta_7 \cdot \text{Cauc}_i + \epsilon_i \]

# OLS model
ols_model <- lm(violent ~ law + prisoners + income + population + male + afam + cauc, data = guns)

# Summary of the OLS model
stargazer(ols_model, type = 'text')
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                               violent          
## -----------------------------------------------
## lawyes                      -87.029***         
##                              (15.067)          
##                                                
## prisoners                    1.102***          
##                               (0.046)          
##                                                
## income                       0.021***          
##                               (0.003)          
##                                                
## population                   13.782***         
##                               (1.144)          
##                                                
## male                         32.176***         
##                               (4.764)          
##                                                
## afam                         -17.653**         
##                               (7.477)          
##                                                
## cauc                        -15.237***         
##                               (3.701)          
##                                                
## Constant                     456.713*          
##                              (248.122)         
##                                                
## -----------------------------------------------
## Observations                   1,173           
## R2                             0.652           
## Adjusted R2                    0.649           
## Residual Std. Error     197.926 (df = 1165)    
## F Statistic          311.140*** (df = 7; 1165) 
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
  1. Direction:

    • Most variables align with expectations. For instance, as the number of prisoners or male population increases, violent crime rates also increase, which makes sense given the demographic association with violent crime.

    • Surprisingly, income has a small positive effect on violent crime. Generally, we expect rising income to lower crime rates, but it’s plausible that wealthier areas could attract more targeted violent crimes, like robbery.

    • LawYes (Shall-carry law) significantly reduces violent crime, as expected, suggesting that these laws may act as a deterrent.

  2. Magnitude:

    • The most notable effects are from LawYes and Male population.

      • The LawYes variable indicates that states with shall-carry laws see a reduction of ~87 violent crimes, which is a strong effect.

      • Male population has a notable increase of ~32 units for every percentage point rise in the male share of the population, consistent with prior literature linking males to higher violent crime rates.

  3. Statistical Significance:

    • All the variables are highly statistically significant (p < 0.01), which supports the reliability of these estimates.
  4. Omitted Variable Bias:

    • There’s likely some omitted variable bias due to unobserved state-specific factors like cultural norms, law enforcement policies, or socio-political factors that affect violent crime rates and could correlate with the right to carry laws. Introducing fixed effects would help control for these unobserved factors, potentially improving the accuracy of the estimates.

Part 3

OLS model with dummy variables for state (fixed effects)

\[ \text{Violent Crime Rate}_i = \beta_0 + \beta_1 \cdot \text{Law}_i + \beta_2 \cdot \text{Prisoners}_i + \beta_3 \cdot \text{Income}_i + \beta_4 \cdot \text{Population}_i \\ + \beta_5 \cdot \text{Male}_i + \beta_6 \cdot \text{Afam}_i + \beta_7 \cdot \text{Cauc}_i + \sum_{s=1}^{49} \delta_s \cdot \text{State}_s + \epsilon_i \]

ols_model_dummy <- lm(violent ~ law + prisoners + income + population + male + afam + cauc + state, data = guns)

# Summary
stargazer(ols_model_dummy, type = "text")
## 
## =====================================================
##                               Dependent variable:    
##                           ---------------------------
##                                     violent          
## -----------------------------------------------------
## lawyes                             -21.991*          
##                                    (11.548)          
##                                                      
## prisoners                          0.212***          
##                                     (0.043)          
##                                                      
## income                              -0.004           
##                                     (0.004)          
##                                                      
## population                          10.143*          
##                                     (5.319)          
##                                                      
## male                              -21.564***         
##                                     (3.862)          
##                                                      
## afam                                -3.949           
##                                     (9.364)          
##                                                      
## cauc                               9.644***          
##                                     (3.113)          
##                                                      
## stateAlaska                        91.021**          
##                                    (44.728)          
##                                                      
## stateArizona                        -45.728          
##                                    (49.454)          
##                                                      
## stateArkansas                     -158.466***        
##                                    (38.798)          
##                                                      
## stateCalifornia                     53.585           
##                                    (141.700)         
##                                                      
## stateColorado                     -201.264***        
##                                    (64.347)          
##                                                      
## stateConnecticut                  -233.689***        
##                                    (63.545)          
##                                                      
## stateDelaware                       -12.543          
##                                    (39.159)          
##                                                      
## stateDistrict of Columbia        1,750.092***        
##                                    (142.044)         
##                                                      
## stateFlorida                      292.074***         
##                                    (67.521)          
##                                                      
## stateGeorgia                        50.772           
##                                    (32.544)          
##                                                      
## stateHawaii                         142.710          
##                                    (136.247)         
##                                                      
## stateIdaho                        -397.551***        
##                                    (67.286)          
##                                                      
## stateIllinois                      161.152**         
##                                    (64.941)          
##                                                      
## stateIndiana                      -266.379***        
##                                    (62.828)          
##                                                      
## stateIowa                         -437.006***        
##                                    (71.579)          
##                                                      
## stateKansas                       -254.441***        
##                                    (57.293)          
##                                                      
## stateKentucky                     -344.681***        
##                                    (58.422)          
##                                                      
## stateLouisiana                    275.271***         
##                                    (34.642)          
##                                                      
## stateMaine                        -527.630***        
##                                    (75.152)          
##                                                      
## stateMaryland                     307.610***         
##                                    (34.177)          
##                                                      
## stateMassachusetts                  -66.184          
##                                    (71.009)          
##                                                      
## stateMichigan                        6.534           
##                                    (58.301)          
##                                                      
## stateMinnesota                    -395.492***        
##                                    (72.544)          
##                                                      
## stateMississippi                   -73.221*          
##                                    (44.179)          
##                                                      
## stateMissouri                       -83.513          
##                                    (52.870)          
##                                                      
## stateMontana                      -467.233***        
##                                    (59.721)          
##                                                      
## stateNebraska                     -347.897***        
##                                    (64.652)          
##                                                      
## stateNevada                         91.108*          
##                                    (48.346)          
##                                                      
## stateNew Hampshire                -541.407***        
##                                    (78.063)          
##                                                      
## stateNew Jersey                    -95.270*          
##                                    (53.873)          
##                                                      
## stateNew Mexico                   140.667***         
##                                    (44.708)          
##                                                      
## stateNew York                      212.864**         
##                                    (89.014)          
##                                                      
## stateNorth Carolina                -56.672*          
##                                    (33.768)          
##                                                      
## stateNorth Dakota                 -527.791***        
##                                    (63.772)          
##                                                      
## stateOhio                         -290.137***        
##                                    (72.372)          
##                                                      
## stateOklahoma                     -135.932***        
##                                    (38.762)          
##                                                      
## stateOregon                       -190.559***        
##                                    (65.628)          
##                                                      
## statePennsylvania                 -346.114***        
##                                    (80.803)          
##                                                      
## stateRhode Island                 -276.096***        
##                                    (63.443)          
##                                                      
## stateSouth Carolina               287.200***         
##                                    (35.105)          
##                                                      
## stateSouth Dakota                 -444.237***        
##                                    (56.117)          
##                                                      
## stateTennessee                      -43.990          
##                                    (42.494)          
##                                                      
## stateTexas                         -146.706*         
##                                    (88.667)          
##                                                      
## stateUtah                         -306.473***        
##                                    (63.207)          
##                                                      
## stateVermont                      -537.282***        
##                                    (75.567)          
##                                                      
## stateVirginia                     -269.442***        
##                                    (37.594)          
##                                                      
## stateWashington                   -199.783***        
##                                    (60.850)          
##                                                      
## stateWest Virginia                -494.089***        
##                                    (68.843)          
##                                                      
## stateWisconsin                    -454.844***        
##                                    (66.854)          
##                                                      
## stateWyoming                      -374.911***        
##                                    (67.449)          
##                                                      
## Constant                            342.495          
##                                    (237.027)         
##                                                      
## -----------------------------------------------------
## Observations                         1,173           
## R2                                   0.917           
## Adjusted R2                          0.913           
## Residual Std. Error           98.856 (df = 1115)     
## F Statistic               215.544*** (df = 57; 1115) 
## =====================================================
## Note:                     *p<0.1; **p<0.05; ***p<0.01

OLS regression on demeaned data (without intercept)

\[ \text{Violent Crime Rate}_i - \overline{\text{Violent Crime Rate}}_s = \beta_1 \cdot (\text{Law}_i - \overline{\text{Law}}_s) + \beta_2 \cdot (\text{Prisoners}_i - \overline{\text{Prisoners}}_s) + \dots + \epsilon_i \]

# Convert 'law' column to numeric
guns <- guns %>% mutate(law_numeric = ifelse(law == "yes", 1, 0))

# Demean the data by subtracting the state-level means
guns_demeaned <- with(guns, data.frame(
  violent = violent - ave(violent, state),
  lawyes = law_numeric - ave(law_numeric, state),
  prisoners = prisoners - ave(prisoners, state),
  income = income - ave(income, state),
  population = population - ave(population, state),
  male = male - ave(male, state),
  afam = afam - ave(afam, state),
  cauc = cauc - ave(cauc, state)
))

# OLS regression on demeaned data (without intercept)
ols_model_demeaned <- lm(violent ~ lawyes + prisoners + income + population + male + afam + cauc - 1, data = guns_demeaned)

# Summary of the demeaned fixed effects model
stargazer(ols_model_demeaned, type = "text")
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                               violent          
## -----------------------------------------------
## lawyes                       -21.991*          
##                              (11.292)          
##                                                
## prisoners                    0.212***          
##                               (0.042)          
##                                                
## income                        -0.004           
##                               (0.004)          
##                                                
## population                    10.143*          
##                               (5.202)          
##                                                
## male                        -21.564***         
##                               (3.777)          
##                                                
## afam                          -3.949           
##                               (9.157)          
##                                                
## cauc                         9.644***          
##                               (3.044)          
##                                                
## -----------------------------------------------
## Observations                   1,173           
## R2                             0.197           
## Adjusted R2                    0.193           
## Residual Std. Error     96.670 (df = 1166)     
## F Statistic          40.970*** (df = 7; 1166)  
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Within Estimator Method

This method automatically de-means the data to remove time-invariant state effects:

\[ \text{Violent Crime Rate}_{it} = \beta_1 \cdot \text{Law}_{it} + \beta_2 \cdot \text{Prisoners}_{it} + \beta_3 \cdot \text{Income}_{it} + \beta_4 \cdot \text{Population}_{it} + \dots + \mu_i + \lambda_t + \epsilon_{it} \]

ols_model_within <- plm(violent ~ law + prisoners + income + population + male + afam + cauc, 
                        data = guns, 
                        index = c("state", "year"), 
                        model = "within")

# Summary of the within fixed effects model
stargazer(ols_model_within, type = "text")
## 
## ========================================
##                  Dependent variable:    
##              ---------------------------
##                        violent          
## ----------------------------------------
## lawyes                -21.991*          
##                       (11.548)          
##                                         
## prisoners             0.212***          
##                        (0.043)          
##                                         
## income                 -0.004           
##                        (0.004)          
##                                         
## population             10.143*          
##                        (5.319)          
##                                         
## male                 -21.564***         
##                        (3.862)          
##                                         
## afam                   -3.949           
##                        (9.364)          
##                                         
## cauc                  9.644***          
##                        (3.113)          
##                                         
## ----------------------------------------
## Observations            1,173           
## R2                      0.197           
## Adjusted R2             0.156           
## F Statistic   39.178*** (df = 7; 1115)  
## ========================================
## Note:        *p<0.1; **p<0.05; ***p<0.01

Two-Way Fixed Effects Model

In the two-way fixed effects model, we control for both state and year effects:

\[ \text{Violent Crime Rate}_{it} = \beta_0 + \beta_1 \cdot \text{Law}_{it} + \beta_2 \cdot \text{Prisoners}_{it} + \beta_3 \cdot \text{Income}_{it} + \dots + \sum_{s=1}^{49} \delta_s \cdot \text{State}_s + \sum_{t=1}^{T} \gamma_t \cdot \text{Year}_t + \epsilon_{it} \]

# OLS model with two-way fixed effects (state and year)
ols_model_SY <- lm(violent ~ law + prisoners + income + population + male + afam + cauc + 
                   as.factor(state) + as.factor(year), data = guns)

# Summary
stargazer(ols_model_SY, type = "text")
## 
## ================================================================
##                                          Dependent variable:    
##                                      ---------------------------
##                                                violent          
## ----------------------------------------------------------------
## lawyes                                         -1.707           
##                                               (10.410)          
##                                                                 
## prisoners                                     0.267***          
##                                                (0.041)          
##                                                                 
## income                                         0.008**          
##                                                (0.004)          
##                                                                 
## population                                      1.205           
##                                                (4.759)          
##                                                                 
## male                                          45.848***         
##                                                (9.459)          
##                                                                 
## afam                                         -42.638***         
##                                               (13.406)          
##                                                                 
## cauc                                          -10.033**         
##                                                (4.753)          
##                                                                 
## as.factor(state)Alaska                         -49.491          
##                                               (41.274)          
##                                                                 
## as.factor(state)Arizona                       -78.796*          
##                                               (44.885)          
##                                                                 
## as.factor(state)Arkansas                     -157.102***        
##                                               (36.423)          
##                                                                 
## as.factor(state)California                    210.636*          
##                                               (126.428)         
##                                                                 
## as.factor(state)Colorado                     -186.328***        
##                                               (56.221)          
##                                                                 
## as.factor(state)Connecticut                  -222.116***        
##                                               (56.713)          
##                                                                 
## as.factor(state)Delaware                       -42.178          
##                                               (34.460)          
##                                                                 
## as.factor(state)District of Columbia        1,618.748***        
##                                               (141.082)         
##                                                                 
## as.factor(state)Florida                      392.468***         
##                                               (60.069)          
##                                                                 
## as.factor(state)Georgia                        39.030           
##                                               (30.504)          
##                                                                 
## as.factor(state)Hawaii                         74.334           
##                                               (130.172)         
##                                                                 
## as.factor(state)Idaho                        -452.400***        
##                                               (66.158)          
##                                                                 
## as.factor(state)Illinois                     207.578***         
##                                               (57.163)          
##                                                                 
## as.factor(state)Indiana                      -258.949***        
##                                               (54.959)          
##                                                                 
## as.factor(state)Iowa                         -438.109***        
##                                               (66.451)          
##                                                                 
## as.factor(state)Kansas                       -286.839***        
##                                               (52.867)          
##                                                                 
## as.factor(state)Kentucky                     -323.605***        
##                                               (52.898)          
##                                                                 
## as.factor(state)Louisiana                    206.075***         
##                                               (30.152)          
##                                                                 
## as.factor(state)Maine                        -491.267***        
##                                               (67.657)          
##                                                                 
## as.factor(state)Maryland                     331.528***         
##                                               (39.500)          
##                                                                 
## as.factor(state)Massachusetts                  -36.225          
##                                               (62.049)          
##                                                                 
## as.factor(state)Michigan                       44.623           
##                                               (50.742)          
##                                                                 
## as.factor(state)Minnesota                    -391.470***        
##                                               (64.809)          
##                                                                 
## as.factor(state)Mississippi                  -161.011***        
##                                               (39.003)          
##                                                                 
## as.factor(state)Missouri                       -57.173          
##                                               (46.516)          
##                                                                 
## as.factor(state)Montana                      -451.407***        
##                                               (54.720)          
##                                                                 
## as.factor(state)Nebraska                     -374.011***        
##                                               (60.919)          
##                                                                 
## as.factor(state)Nevada                        101.841**         
##                                               (42.874)          
##                                                                 
## as.factor(state)New Hampshire                -530.460***        
##                                               (68.700)          
##                                                                 
## as.factor(state)New Jersey                     -23.346          
##                                               (51.471)          
##                                                                 
## as.factor(state)New Mexico                   116.858***         
##                                               (42.772)          
##                                                                 
## as.factor(state)New York                     348.503***         
##                                               (82.516)          
##                                                                 
## as.factor(state)North Carolina                 -43.834          
##                                               (30.043)          
##                                                                 
## as.factor(state)North Dakota                 -623.353***        
##                                               (65.111)          
##                                                                 
## as.factor(state)Ohio                         -206.816***        
##                                               (62.890)          
##                                                                 
## as.factor(state)Oklahoma                     -148.461***        
##                                               (34.227)          
##                                                                 
## as.factor(state)Oregon                       -145.486**         
##                                               (57.762)          
##                                                                 
## as.factor(state)Pennsylvania                 -232.074***        
##                                               (70.683)          
##                                                                 
## as.factor(state)Rhode Island                 -281.459***        
##                                               (57.356)          
##                                                                 
## as.factor(state)South Carolina               246.525***         
##                                               (30.898)          
##                                                                 
## as.factor(state)South Dakota                 -513.456***        
##                                               (55.795)          
##                                                                 
## as.factor(state)Tennessee                      -1.456           
##                                               (36.843)          
##                                                                 
## as.factor(state)Texas                          -93.520          
##                                               (76.833)          
##                                                                 
## as.factor(state)Utah                         -498.669***        
##                                               (73.491)          
##                                                                 
## as.factor(state)Vermont                      -536.024***        
##                                               (68.062)          
##                                                                 
## as.factor(state)Virginia                     -254.251***        
##                                               (35.831)          
##                                                                 
## as.factor(state)Washington                   -185.820***        
##                                               (52.999)          
##                                                                 
## as.factor(state)West Virginia                -429.218***        
##                                               (62.588)          
##                                                                 
## as.factor(state)Wisconsin                    -450.417***        
##                                               (59.985)          
##                                                                 
## as.factor(state)Wyoming                      -434.433***        
##                                               (62.624)          
##                                                                 
## as.factor(year)1978                            22.764           
##                                               (17.084)          
##                                                                 
## as.factor(year)1979                           72.057***         
##                                               (17.362)          
##                                                                 
## as.factor(year)1980                          112.780***         
##                                               (17.652)          
##                                                                 
## as.factor(year)1981                          123.398***         
##                                               (18.276)          
##                                                                 
## as.factor(year)1982                          112.761***         
##                                               (19.252)          
##                                                                 
## as.factor(year)1983                           87.623***         
##                                               (20.613)          
##                                                                 
## as.factor(year)1984                           92.569***         
##                                               (22.722)          
##                                                                 
## as.factor(year)1985                          112.612***         
##                                               (24.807)          
##                                                                 
## as.factor(year)1986                          149.012***         
##                                               (27.176)          
##                                                                 
## as.factor(year)1987                          146.649***         
##                                               (29.632)          
##                                                                 
## as.factor(year)1988                          181.475***         
##                                               (32.378)          
##                                                                 
## as.factor(year)1989                          208.459***         
##                                               (34.916)          
##                                                                 
## as.factor(year)1990                          289.252***         
##                                               (42.716)          
##                                                                 
## as.factor(year)1991                          322.070***         
##                                               (44.803)          
##                                                                 
## as.factor(year)1992                          337.185***         
##                                               (47.294)          
##                                                                 
## as.factor(year)1993                          349.598***         
##                                               (49.130)          
##                                                                 
## as.factor(year)1994                          331.764***         
##                                               (51.368)          
##                                                                 
## as.factor(year)1995                          318.127***         
##                                               (53.519)          
##                                                                 
## as.factor(year)1996                          281.507***         
##                                               (55.575)          
##                                                                 
## as.factor(year)1997                          258.594***         
##                                               (57.551)          
##                                                                 
## as.factor(year)1998                          220.464***         
##                                               (59.810)          
##                                                                 
## as.factor(year)1999                          186.109***         
##                                               (61.879)          
##                                                                 
## Constant                                       379.268          
##                                               (286.651)         
##                                                                 
## ----------------------------------------------------------------
## Observations                                    1,173           
## R2                                              0.940           
## Adjusted R2                                     0.935           
## Residual Std. Error                      85.026 (df = 1093)     
## F Statistic                          215.469*** (df = 79; 1093) 
## ================================================================
## Note:                                *p<0.1; **p<0.05; ***p<0.01

Comparison

# Generate a summary table with custom column labels
stargazer(ols_model_dummy,
          ols_model_demeaned,
          ols_model_within,
          type = "text",
          column.labels = c("Dummy Fixed Effects", "Demeaned Fixed Effects", 
                            "Within Fixed Effects (PLM)"),
          title = "Regression Results: Comparison of Fixed Effects Models",
          dep.var.labels = "Violent Crime Rate",
          covariate.labels = c("Shall Carry Law", "Prisoners", "Income", 
                               "Population", "Male (10-29)", "African American", 
                               "Caucasian"),
          no.space = TRUE, 
          omit = c("state"),  # Adjust this if you're facing issues with fixed effects
          omit.stat = c("f", "ser", "adj.rsq"),  # Optional: omit stats you don't need
          notes = "Standard errors in parentheses")  # Optional: custom notes
## 
## Regression Results: Comparison of Fixed Effects Models
## ======================================================================================
##                                           Dependent variable:                         
##                  ---------------------------------------------------------------------
##                                           Violent Crime Rate                          
##                                     OLS                               panel           
##                                                                       linear          
##                  Dummy Fixed Effects Demeaned Fixed Effects Within Fixed Effects (PLM)
##                          (1)                  (2)                      (3)            
## --------------------------------------------------------------------------------------
## Shall Carry Law       -21.991*              -21.991*                 -21.991*         
##                       (11.548)              (11.292)                 (11.548)         
## Prisoners             0.212***              0.212***                 0.212***         
##                        (0.043)              (0.042)                  (0.043)          
## Income                 -0.004                -0.004                   -0.004          
##                        (0.004)              (0.004)                  (0.004)          
## Population             10.143*              10.143*                  10.143*          
##                        (5.319)              (5.202)                  (5.319)          
## Male (10-29)         -21.564***            -21.564***               -21.564***        
##                        (3.862)              (3.777)                  (3.862)          
## African American       -3.949                -3.949                   -3.949          
##                        (9.364)              (9.157)                  (9.364)          
## Caucasian             9.644***              9.644***                 9.644***         
##                        (3.113)              (3.044)                  (3.113)          
## Constant               342.495                                                        
##                       (237.027)                                                       
## --------------------------------------------------------------------------------------
## Observations            1,173                1,173                    1,173           
## R2                      0.917                0.197                    0.197           
## ======================================================================================
## Note:                                                      *p<0.1; **p<0.05; ***p<0.01
##                                                         Standard errors in parentheses