library(wooldridge)
data <- wooldridge::discrim

# (i)
model1 <- lm(log(psoda) ~ prpblck + log(income) + prppov, data = data)
summary(model1)
## 
## Call:
## lm(formula = log(psoda) ~ prpblck + log(income) + prppov, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.32218 -0.04648  0.00651  0.04272  0.35622 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.46333    0.29371  -4.982  9.4e-07 ***
## prpblck      0.07281    0.03068   2.373   0.0181 *  
## log(income)  0.13696    0.02676   5.119  4.8e-07 ***
## prppov       0.38036    0.13279   2.864   0.0044 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08137 on 397 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.08696,    Adjusted R-squared:  0.08006 
## F-statistic:  12.6 on 3 and 397 DF,  p-value: 6.917e-08
#(ii)
correlation <- cor(log(data$income), data$prppov)
cat("Correlation between log(income) and prppov: ", correlation, "\n")
## Correlation between log(income) and prppov:  NA
cor_test <- cor.test(log(data$income), data$prppov)
print(cor_test)
## 
##  Pearson's product-moment correlation
## 
## data:  log(data$income) and data$prppov
## t = -31.04, df = 407, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8650980 -0.8071224
## sample estimates:
##       cor 
## -0.838467
#(iii)
model2 <- lm(log(psoda) ~ prpblck + log(income) + prppov + log(hseval), data = discrim)
summary(model2)
## 
## Call:
## lm(formula = log(psoda) ~ prpblck + log(income) + prppov + log(hseval), 
##     data = discrim)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.30652 -0.04380  0.00701  0.04332  0.35272 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.84151    0.29243  -2.878 0.004224 ** 
## prpblck      0.09755    0.02926   3.334 0.000937 ***
## log(income) -0.05299    0.03753  -1.412 0.158706    
## prppov       0.05212    0.13450   0.388 0.698571    
## log(hseval)  0.12131    0.01768   6.860 2.67e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07702 on 396 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.1839, Adjusted R-squared:  0.1757 
## F-statistic: 22.31 on 4 and 396 DF,  p-value: < 2.2e-16
#(iv)
anova(model1, model2)
## Analysis of Variance Table
## 
## Model 1: log(psoda) ~ prpblck + log(income) + prppov
## Model 2: log(psoda) ~ prpblck + log(income) + prppov + log(hseval)
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1    397 2.6284                                  
## 2    396 2.3493  1   0.27915 47.054 2.668e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#(v)
cat("R-squared of model 1: ", summary(model1)$r.squared, "\n")
## R-squared of model 1:  0.08696154
cat("R-squared of model 2: ", summary(model2)$r.squared, "\n")
## R-squared of model 2:  0.1839299
cat("AIC of model 1: ", AIC(model1), "\n")
## AIC of model 1:  -868.0719
cat("AIC of model 2: ", AIC(model2), "\n")
## AIC of model 2:  -911.0953
cat("BIC of model 1: ", BIC(model1), "\n")
## BIC of model 1:  -848.1021
cat("BIC of model 2: ", BIC(model2), "\n")
## BIC of model 2:  -887.1315