library(wooldridge)  
library(car)        
## Loading required package: carData
library(lmtest)     
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
data("discrim")

(i) OLS estimation of the initial model

model1 <- lm(log(psoda) ~ prpblck + log(income) + prppov, data = discrim)
summary(model1)
## 
## Call:
## lm(formula = log(psoda) ~ prpblck + log(income) + prppov, data = discrim)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.32218 -0.04648  0.00651  0.04272  0.35622 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.46333    0.29371  -4.982  9.4e-07 ***
## prpblck      0.07281    0.03068   2.373   0.0181 *  
## log(income)  0.13696    0.02676   5.119  4.8e-07 ***
## prppov       0.38036    0.13279   2.864   0.0044 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08137 on 397 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.08696,    Adjusted R-squared:  0.08006 
## F-statistic:  12.6 on 3 and 397 DF,  p-value: 6.917e-08
# Get two-sided p-value for β1 (prpblck coefficient)
coef_test1 <- summary(model1)$coefficients["prpblck", ]
p_value_prpblck <- coef_test1[4]  # p-value for prpblck

(ii) Correlation analysis

cor_test <- cor.test(log(discrim$income), discrim$prppov)
print(cor_test)
## 
##  Pearson's product-moment correlation
## 
## data:  log(discrim$income) and discrim$prppov
## t = -31.04, df = 407, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8650980 -0.8071224
## sample estimates:
##       cor 
## -0.838467

(iii) Add log(hseval) to the model

model2 <- lm(log(psoda) ~ prpblck + log(income) + prppov + log(hseval), data = discrim)
summary(model2)
## 
## Call:
## lm(formula = log(psoda) ~ prpblck + log(income) + prppov + log(hseval), 
##     data = discrim)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.30652 -0.04380  0.00701  0.04332  0.35272 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.84151    0.29243  -2.878 0.004224 ** 
## prpblck      0.09755    0.02926   3.334 0.000937 ***
## log(income) -0.05299    0.03753  -1.412 0.158706    
## prppov       0.05212    0.13450   0.388 0.698571    
## log(hseval)  0.12131    0.01768   6.860 2.67e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.07702 on 396 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.1839, Adjusted R-squared:  0.1757 
## F-statistic: 22.31 on 4 and 396 DF,  p-value: < 2.2e-16

(iv) Joint significance test for log(income) and prppov

# Restricted model (removing both variables)
model3 <- lm(log(psoda) ~ prpblck + log(hseval), data = discrim)

# F-test for joint significance
anova_test <- anova(model3, model2)
print(anova_test)
## Analysis of Variance Table
## 
## Model 1: log(psoda) ~ prpblck + log(hseval)
## Model 2: log(psoda) ~ prpblck + log(income) + prppov + log(hseval)
##   Res.Df    RSS Df Sum of Sq      F  Pr(>F)  
## 1    398 2.3911                              
## 2    396 2.3493  2  0.041797 3.5227 0.03045 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#(V)

cat("\nResults Summary:\n")
## 
## Results Summary:
cat("\n1. Initial Model Results:")
## 
## 1. Initial Model Results:
cat("\n   Coefficient for prpblck:", coef(model1)["prpblck"])
## 
##    Coefficient for prpblck: 0.07280726
cat("\n   p-value for prpblck:", p_value_prpblck)
## 
##    p-value for prpblck: 0.0180976
cat("\n\n2. Correlation between log(income) and prppov:")
## 
## 
## 2. Correlation between log(income) and prppov:
cat("\n   Correlation coefficient:", cor_test$estimate)
## 
##    Correlation coefficient: -0.838467
cat("\n   p-value:", cor_test$p.value)
## 
##    p-value: 2.349013e-109
cat("\n\n3. Model with log(hseval):")
## 
## 
## 3. Model with log(hseval):
cat("\n   Coefficient for log(hseval):", coef(model2)["log(hseval)"])
## 
##    Coefficient for log(hseval): 0.1213057
cat("\n   p-value for log(hseval):", summary(model2)$coefficients["log(hseval)", 4])
## 
##    p-value for log(hseval): 2.668125e-11
cat("\n\n4. Joint significance test p-value for log(income) and prppov:")
## 
## 
## 4. Joint significance test p-value for log(income) and prppov:
cat
## function (..., file = "", sep = " ", fill = FALSE, labels = NULL, 
##     append = FALSE) 
## {
##     if (is.character(file)) 
##         if (file == "") 
##             file <- stdout()
##         else if (startsWith(file, "|")) {
##             file <- pipe(substring(file, 2L), "w")
##             on.exit(close(file))
##         }
##         else {
##             file <- file(file, ifelse(append, "a", "w"))
##             on.exit(close(file))
##         }
##     .Internal(cat(list(...), file, sep, fill, labels, append))
## }
## <bytecode: 0x5ca85a3989e8>
## <environment: namespace:base>