# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("VOO", "GME", "XOM", "ABT", "NVDA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "ABT" "GME" "NVDA" "VOO" "XOM"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 ABT 0.25
## 2 GME 0.25
## 3 NVDA 0.2
## 4 VOO 0.2
## 5 XOM 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0142
## 2 2013-02-28 0.0291
## 3 2013-03-28 0.0517
## 4 2013-04-30 0.0844
## 5 2013-05-31 0.00544
## 6 2013-06-28 0.0375
## 7 2013-07-31 0.0716
## 8 2013-08-30 -0.0240
## 9 2013-09-30 0.0122
## 10 2013-10-31 0.0579
## # ℹ 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 0.426
# assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "steelblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling", window, " Month Kurtosis")) +
annotate(geom = "text", x = as.Date("2016-07-01"), y = 3,
size = 4.75, color = "red",
label = str_glue("Downside risk skyrocketed
toward the end of 2017"))
Has the downside risk of your portfolio increased or decreased over
time? Explain using the plot you created. You may also refer to the
skewness of the returns distribution you plotted in the previous
assignment.
The downside risk of my portfolio increased over time. This means that the companies within the portfolio have a wide range of data spread out and the tails become fatter increasing the probability of extreme values. NVDA had over 4% returns with a .9 Kurtosis, ABT had slightly over 1% returns with nearly a 1 Kurtosis, XOM had slightly more than 0% returns and near zero negative Kurtosis, VOO had slightly over 1% returns with a .4 Kurtosis, and GME had slightly negative gains and a .9 Kurtosis.