# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("UNH", "AAPL", "UPS", "WMT", "LME")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "LME" "UNH" "UPS" "WMT"
# weights
weights <- c(0.20, 0.25, 0.2, 0.25, 0.1)
weights
## [1] 0.20 0.25 0.20 0.25 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.2
## 2 LME 0.25
## 3 UNH 0.2
## 4 UPS 0.25
## 5 WMT 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 63 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0772
## 2 2013-02-28 -0.0367
## 3 2013-03-28 -0.0148
## 4 2013-04-30 0.0585
## 5 2013-05-31 -0.0894
## 6 2013-06-28 0.0416
## 7 2013-07-31 0.200
## 8 2013-08-30 -0.0575
## 9 2013-09-30 -0.0248
## 10 2013-10-31 -0.0707
## # ℹ 53 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 8.72
# assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
# Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "steelblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 11, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling", window, " Month Kurtosis")) +
annotate(geom = "text", x = as.Date("2016-07-01"), y = 3,
size = 5, color = "orangered3",
label = str_glue("Downside risk skyrocketed
in 2015 slowly falling then
rising again 2 years later with a
sharp decline with another sharp
incline afterwards"))
Has the downside risk of your portfolio increased or decreased over
time? Explain using the plot you created. You may also refer to the
skewness of the returns distribution you plotted in the previous
assignment.
I think the sharp Increases in kurtosis due to a large mix of extreme returns skewing the market and the data, with that fully leveling back out where I believe a similar situation happen with it finally at its settling point coming down when the ranges of returns are more moderate and extreme returns lowering in probability