# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the downside risk of your portfolio in terms of kurtosis.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("META", "MSFT", "GOOG", "NVDA", "AMZN")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
#symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "GOOG" "META" "MSFT" "NVDA"
#weights
weights <- c(0.5)
weights
## [1] 0.5
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.5
## 2 GOOG 0.5
## 3 META 0.5
## 4 MSFT 0.5
## 5 NVDA 0.5
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalence_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.151
## 2 2013-02-28 -0.0133
## 3 2013-03-28 -0.00909
## 4 2013-04-30 0.133
## 5 2013-05-31 0.0491
## 6 2013-06-28 0.00582
## 7 2013-07-31 0.141
## 8 2013-08-30 0.0324
## 9 2013-09-30 0.156
## 10 2013-10-31 0.118
## # ℹ 50 more rows
portfolio_kurt_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Kurtosis)
portfolio_kurt_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Kurtosis
## <dbl>
## 1 -0.506
# Assign a value for window
window = 24
# Transform data: calculate 24 month rolling kurtosis
rolling_kurt_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = kurtosis,
col_rename = "kurt") %>%
na.omit() %>%
select(-returns)
#Plot
rolling_kurt_tbl %>%
ggplot(aes(x = date, y = kurt)) +
geom_line(color = "cornflowerblue") +
# Formatting
scale_y_continuous(breaks = seq(-1, 4, 0.5)) +
scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
theme(plot.title = element_text(hjust = 0.5)) +
# Labeling
labs(x = NULL,
y = "Kurtosis",
title = paste0("Rolling ", window, " Month Kurtosis")) +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 3,
size = 5, color = "red",
label = str_glue("Downside risk skyrocketed
toward the end of 2015"))
Has the downside risk of your portfolio increased or decreased over time? Explain using the plot you created. You may also refer to the skewness of the returns distribution you plotted in the previous assignment.
The downside risk went up towards the end of 2016, and started slowly rising again in 2017 and 2018. It started a downward trend towards the end of 2018 however. The portfolio has a kurtosis of -0.468 which means that it does not have as many extreme values. The skewness of the portfolio was 0.508 which suggests that there are higher amounts of extreme outliers in the portfolio.