# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x= symbols,
get ="stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select= adjusted,
mutate_fun= periodReturn,
period= "monthly",
type= "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
#weights
weights <- c(0.25,0.25,0.2,0.2,0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols,weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
replace_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00220
## 3 2013-03-28 0.0127
## 4 2013-04-30 0.0173
## 5 2013-05-31 -0.0113
## 6 2013-06-28 -0.0233
## 7 2013-07-31 0.0342
## 8 2013-08-30 -0.0231
## 9 2013-09-30 0.0513
## 10 2013-10-31 0.0305
## # ℹ 50 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.221
# Mean of portfolio returns
portfolio_mean_tidyquant_builtin_percent <-
mean(portfolio_returns_tbl$returns)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 × 1
## Skewness
## <dbl>
## 1 -0.221
##6 Plot
## Calculate sd of portfolio returns
sd_portfolio <- sd(portfolio_returns_tbl$returns)
mean_portfolio <- mean(portfolio_returns_tbl$returns)
portfolio_returns_tbl %>%
#Add a new variable
mutate(extreme_neg = ifelse(returns < mean_portfolio - 2 * sd_portfolio, "ext_neg",
"not_ext_neg")) %>%
ggplot(aes(x = returns, fill = extreme_neg)) +
geom_histogram(binwidth = 0.003)
scale_x_continuous(breaks = seq(-0.06,0.06,0.02))
## <ScaleContinuousPosition>
## Range:
## Limits: 0 -- 1
labs(x = "monthly returns")
## $x
## [1] "monthly returns"
##
## attr(,"class")
## [1] "labels"
# Data Transformation: Caluculate Skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup()
#Add Portfolio Skewness
add_row(tibble(asset= "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
## # A tibble: 2 × 2
## asset skew
## <chr> <dbl>
## 1 Portfolio -0.221
## 2 <NA> NA
#Plot Skewness
rolling_skew_tbl <- asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
###Rolling Skewness
# Transform Data : Calculate Rolling Skewness
rolling_skew_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = 24,
FUN = skewness,
col_rename = "Skew") %>%
select(-returns) %>%
na.omit()
#Plot
rolling_skew_tbl %>%
ggplot(aes(x = date, y = Skew)) +
geom_line(color = "cornflowerblue") +
geom_hline(yintercept = 0, linetype = "dotted", size = 2) +
#Formatting
scale_y_continuous(limits = c(-1,1), breaks = seq(-1,1,0.2)) +
theme(plot.title = element_text(hjust = 0.5)) +
annotate(geom = "text",
x = as.Date("2016-07-01"), y = 0.8,
color = "red", size = 5,
label = str_glue("The 24 month rolling skewness is positive for about half of the lifetime even though the overall skewness is negative"))
#Labelling
labs(y = "Skewness",
x = NULL,
title = "Rolling 24-Month Skewness")
## $y
## [1] "Skewness"
##
## $x
## NULL
##
## $title
## [1] "Rolling 24-Month Skewness"
##
## attr(,"class")
## [1] "labels"