library(naniar)
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## 
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
## 
##     sleep
library(missMDA)
library(lattice)
library(ggplot2)
library(datasets)
library(mice)
## 
## Attaching package: 'mice'
## The following object is masked from 'package:stats':
## 
##     filter
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(e1071)
library(caret)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.1
## ✔ readr     2.1.5
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks mice::filter(), stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ✖ purrr::lift()   masks caret::lift()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(rmarkdown)

Memanggil Data dari Path yang Sama

data3<- read.csv("dataresiko.csv", stringsAsFactors = TRUE)
data3
##     Country      X1          X2         X3       X4      X5       X6      X7
## 1        AD 17.5000  38674.6160  172.75400  0.68000  1.2206  1.78560 -2.0843
## 2        AE 18.2000  40105.1201  103.52280  1.76600  0.8698  2.65884 -0.7254
## 3     AE-AZ 18.7000  76037.9968   31.03626  2.63056  1.4893  1.85034 -1.9008
## 4     AE-RK      NA  27882.8286   24.78532  1.29416  1.7530  2.23192 -1.1355
## 5        AM 14.0000   4251.3977   89.61882  1.44000  0.2562  4.74800  2.3318
## 6        AO      NA   2033.8999   57.05566 22.35646  3.3422 -0.87800 -5.2032
## 7        AR 23.2527   9203.4287   43.25546 36.70346  0.9657 -0.23680 -3.7297
## 8        AT 18.5740  53174.2385  159.39690  1.52348  0.7259  1.88048 -0.3001
## 9        AU 15.7000  63972.3400  121.98890  1.65124  1.4790  2.44592  0.0306
## 10       AW 33.5000  24642.7034   92.84624  1.21694  0.7972  2.06486 -4.7211
## 11       AZ 25.3012   5083.2568   43.35272  6.85276  1.0510  0.39070 -1.7366
## 12       BD  4.2000   2323.5586   19.74352  5.81200  1.0568  7.39000  6.0712
## 13       BE 19.3188  49537.5785  256.72570  1.64000  0.5259  1.70044 -0.4905
## 14       BG 22.7406  11288.8489   70.29080  0.77854 -0.7095  3.61996  2.7008
## 15       BH 20.0000  22003.1172  214.20080  1.82200  4.4021  2.80902 -3.2531
## 16       BJ 10.5000   1420.6492   49.56500  0.22520  2.7684  4.87736  2.2133
## 17       BO 12.2800   3372.3576   32.27932  2.92384  1.4362  3.95132 -0.0467
## 18       BR 19.1400   7372.9153   35.67380  5.72400  0.7789 -0.46082 -1.3423
## 19       BY      NA   6453.9238   69.54962  8.39000  0.0197  0.10000  0.6603
## 20       CA 16.0956  51704.8992  117.76010  1.67406  1.1918  1.79828 -0.5879
## 21       CG 22.3000   2378.0444   70.34826  2.03374  2.5889 -5.13500 -8.1338
## 22       CH 19.3000  89770.8521  275.61690  0.00116  0.8402  1.88522  0.1733
## 23       CI      NA   2594.7038   35.68100  0.75212  2.5779  7.29640  3.3099
## 24       CL 14.2800  15986.3031   65.82414  2.97824  1.2484  1.97106 -0.8925
## 25       CM  9.1000   1690.8639   39.74812  1.54052  2.6442  4.35350  0.7177
## 26       CN 14.7045  12226.6610   13.63044  2.00000  0.4575  6.64354  5.2661
## 27       CO 17.2000   5859.6535   47.58910  4.70940  1.3766  2.44972 -0.8876
## 28       CR 13.2840  11954.5890   44.98044  1.34600  0.9961  3.24766  0.7026
## 29       CV 19.4200   3466.2500  115.31060  0.37920  1.1636  3.92138 -0.4036
## 30       CY 16.0000  30630.2905 1026.49500 -0.15102  0.1535  4.62534  2.8078
## 31       CZ 21.3796  27044.7929   79.21186  1.57500  0.2067  3.72134  1.3165
## 32       DE 18.5800  50891.5812  165.29300  1.20768  0.4835  1.62892 -0.1226
## 33       DK 22.6000  67565.6556  155.84030  0.54000  0.3613  2.68708  1.3106
## 34       DO 18.6500   8172.2496   42.49502  2.22228  0.9213  6.05690  2.4036
## 35       EC 13.4000   5830.4242   49.66284  1.23328  1.7062  0.50846 -2.7675
## 36       EE 25.3120  26427.0455   84.20358  2.03974  0.2136  3.94866  2.6995
## 37       EG 20.1000   3756.4221   31.92960 16.16054  2.0540  4.44796  2.2412
## 38       ES 16.9822  30488.0476  176.49180  0.71830  0.3949  2.84406 -0.4857
## 39       ET      NA    891.6737   33.04222 10.37682  2.6572  9.06000  5.5428
## 40       FI 20.1000  53937.2819  257.89490  0.67100  0.2165  1.82644  0.9465
## 41       FR 19.6501  44939.9046  247.44200  0.99026  0.2532  1.63728 -0.4225
## 42       GA      NA   7803.8309   39.13694  2.80396  2.7047  2.25300 -1.5934
## 43       GB 21.6000  46723.9041  406.04150  1.53050  0.6090  1.70254 -1.3484
## 44       GE 17.6000   4422.7082  104.45110  3.93800 -0.0317  4.12018  2.3147
## 45       GH 15.0000   2353.8541   59.62672 12.94200  2.2431  5.29400  2.6949
## 46       GR 16.6643  19404.1830  239.31940  0.26994 -0.2217  0.75896 -0.5866
## 47       GT 16.1000   4478.2807   34.07538  3.74200  1.9677  3.40778  0.3178
## 48       HK 20.7000  50214.6484  446.31540  2.43600  0.8510  1.99164 -0.5657
## 49       HR 25.5000  16617.8744   89.53644  0.55302 -0.7565  3.00696  1.6712
## 50       HU 18.2802  18224.0904  115.04970  1.84622 -0.2417  4.07978  2.5449
## 51       ID 23.9000   4223.4646   35.44648  3.94398  1.1454  5.03546  2.5001
## 52       IE 25.4692  91715.2029  815.34610  0.32334  1.1977 10.07624  4.5268
## 53       IL      NA  50813.0432   26.75248  0.14240  1.6423  3.36048  0.7084
## 54       IN 13.6000   2218.5362   20.80796  4.24752  1.0491  6.72450  2.6258
## 55       IQ      NA   4270.7893   37.55918  0.44192  2.4876  3.80000 -1.3546
## 56       IS 24.8200  66458.8741  108.86200  0.41926  2.0438  4.63556  0.3121
## 57       IT 16.0000  34641.2557  129.37690  0.65218 -0.0396  0.98170 -0.8850
## 58       JM 14.3000   4938.6880   90.75014  3.60208  0.4806  1.18000 -1.4606
## 59       JO 17.9300   4433.1037   70.49410  1.37566  1.9443  2.02956 -0.6875
## 60       JP 17.3000  40838.2838   75.76394  0.51938 -0.1929  0.91240 -0.1394
## 61       KE 18.4444   2025.2907   52.90428  6.28796  2.8000  5.62820  1.9242
## 62       KR 14.8000  35337.0758   26.36510  1.09614  0.3751  2.77248  1.6542
## 63       KW      NA  30276.8754   47.57912  1.88400  1.9857  0.13772 -3.7375
## 64       KZ 26.9700  10589.0517   56.21532  7.95000  1.3350  3.00000  0.9054
## 65       LK 16.5000   3822.1732   59.36342  4.21800  0.8755  3.67800  1.0805
## 66       LS 22.9520   1010.6177   61.18192  5.00340  0.7958  0.39388 -3.2384
## 67       LS 11.0000   2637.6890   85.47152  1.81194  1.5534  6.57820  3.6709
## 68       LT 21.8073  22636.1217   78.06336  1.69862 -0.8862  3.42028  3.7273
## 69       LU 23.9000 124340.3835 6908.35200  1.17428  2.0218  3.22626  0.0792
## 70       LV 24.9680  19638.1070  134.37960  1.70144 -0.7032  3.13634  2.3134
## 71       MA 15.2000   3301.6090   45.30954  1.18800  1.2641  3.09514 -0.4997
## 72       MK 16.6966   6571.8228   72.20372  0.62200  0.0389  2.77890  1.0689
## 73       MN      NA   4393.3037  218.85680  4.98958  1.8006  4.25820  0.9093
## 74       MO 14.5000  52074.0604  194.62240  2.78282  1.2126 -1.66952 -9.8453
## 75       MT 23.9600  31441.2784  761.28590  1.32032  3.1949  6.53774 -0.1381
## 76       MV 47.5000   8656.5566   35.18078  0.88000  3.5095  6.30000 -3.6495
## 77       MX 17.7000   9729.2631   37.27282  4.02524  1.1350  2.01104 -1.4444
## 78       MY 18.3000  11363.6075   65.23842  1.91000  1.3474  4.87800  1.3926
## 79       MZ 26.0000    434.4606  356.19670  9.04260  2.9384  3.92880 -0.4276
## 80     <NA> 15.2000   5051.3480   60.48620  4.85712  1.8806  0.75446 -3.5756
## 81       NG 15.4000   2149.7791   24.81464 12.94034  2.6197  1.19458 -2.3145
## 82       NI 21.7500   1986.7204   83.97706  4.34306  1.0414  1.37996 -1.0152
## 83       NL 18.9026  57230.6715  512.18330  1.17730  0.5927  2.21984  0.4875
## 84       NO 23.1000  82858.2833  155.89490  2.61900  0.8375  1.46654  0.1530
## 85       NZ      NA  48925.4692  103.06840  1.20152  2.0008  3.39204  0.0639
## 86       OM 19.1000  14957.4883   88.59674  0.76000  2.3197  1.99976 -2.3013
## 87       PA 16.2500  13872.7952  156.66240  0.42400  1.6872  4.58302 -1.8406
## 88       PE 15.5888   6528.2061   35.38870  2.69720  1.0511  3.17022 -0.7479
## 89       PH 14.9396   3658.9600   32.33956  2.49528  1.4217  6.56308  1.9917
## 90       PK 17.2000   1406.1297   29.25594  4.73824  1.8710  4.29018  1.5142
## 91       PL 20.1490  17732.6481   67.90290  0.80874 -0.0948  4.34840  3.1314
## 92       PT 16.7000  25282.8171  203.15930  0.83600 -0.3333  2.53122  0.9934
## 93       PY 19.1000   5054.1153   43.10920  3.52000  1.2931  2.96754  0.8830
## 94       QA 18.8000  55338.4835  108.79850  0.82252  2.3456  1.66590 -2.3610
## 95       RO 23.2000  14981.8900   52.57054  1.51808 -0.5878  4.71770  3.9390
## 96       RS 21.8000   8768.7320   86.54676  1.90000 -0.5088  3.17400  3.1268
## 97       RU 12.7000  10274.3779   33.40582  6.72076  0.1073  0.97740  0.6743
## 98       RW 23.3000    825.5581   52.98370  4.20636  2.6417  7.36908  2.2852
## 99       SA      NA  21664.6362   48.19680  0.76200  2.5009  1.56022 -2.5833
## 100      SC 19.0200  13490.5158  109.22200  1.18702  1.0858  3.51306 -1.1137
##            X8          X9          X10     X11      X12      X13     X14
## 1    55.00000   -26.52000     2.857862  8.0000 23.08410 26.94344  3.0000
## 2   102.52738   -13.59890   352.910575  8.1550 24.85976 32.47740  2.4500
## 3   102.52738   -56.24160   199.928422  8.1550 20.39940 31.03926      NA
## 4   102.52738    24.78532    10.108892      NA 21.69104 17.30888      NA
## 5   166.80851    47.27262    12.645460  6.6000 19.40300 15.11172 18.5000
## 6    34.81845    15.44938    62.485865 10.3000 31.12380 20.57210 10.5000
## 7          NA    -5.01348   375.190755 10.6000 16.71368 13.81918 11.0500
## 8   116.41876    15.36980   429.980978  2.0190 24.78244 26.89982  6.0000
## 9   191.74943    57.95768  1359.132847  0.9600 24.28828 22.49670  5.4478
## 10   80.54508    28.09668     2.383969  5.0000 21.13634 24.49756  8.0000
## 11  110.63987  -174.36800    42.607177      NA 23.63816 29.44668  7.0000
## 12   78.40700     4.91586   347.147671  7.7000 32.70006 32.19390  5.0000
## 13   90.42874   -18.98450   514.176961      NA 24.55938 24.73148  6.0000
## 14   72.99709   -12.95970    69.103768  5.7984 20.46028 23.25440  5.3000
## 15         NA   -51.11920    34.539229      NA 31.14198 28.74462  4.0000
## 16   81.54536    20.59038    15.355253 17.0000 23.40036 19.12786  2.3000
## 17  101.29834   -20.17800    37.238307      NA 20.84156 16.34698  8.5000
## 18   76.95112    10.01940  1444.733210      NA 15.49512 13.50872 13.9500
## 19  149.03716    42.60472    60.258857  4.8292 28.15432 18.39389  4.5000
## 20  106.86400    45.53354  1721.506090  0.5333 23.26748 20.61472  7.4503
## 21   84.09314    54.86688     9.707663 24.4000 46.82746 35.13040      NA
## 22   82.50000  -152.44500   749.017673  0.7500 24.41888 32.83370  3.1728
## 23   83.29876     7.37624    61.348608  8.8000 20.82476 19.42264 12.0000
## 24  116.51738    14.00910   252.940034  1.7229 22.48684 20.37026 10.0000
## 25   87.68676    26.04546    40.349134 20.0000 28.82414 25.75278      NA
## 26   94.22575   -26.98080 14866.703370  1.8396 43.17774 44.69396  4.9000
## 27  117.32727     9.92820   271.346897  3.1800 22.22970 18.09570 13.0000
## 28  125.26214     1.74676    61.520675  2.7000 17.93502 15.88014 15.0000
## 29   67.45486    51.37952     1.703701  9.5200 35.67148 32.54966 15.8000
## 30   68.15254   456.48640    23.804052      NA 17.90342 14.38300  7.8000
## 31   76.50765   -16.61460   243.530380  2.6562 27.97028 30.60572  3.4000
## 32  138.35724   -15.64810  3793.593164      NA 20.71144 28.03106  4.8177
## 33  359.13886    -5.59082   355.184032  1.8000 22.06322 29.24874  5.4000
## 34   80.10580    20.97700    79.001191  1.8500 23.77748 23.65308  5.7000
## 35   99.71869     8.90856    98.808010      NA 26.15664 26.23654  7.2000
## 36  104.68417   -13.26730    30.960228  0.3791 26.20832 28.47148  6.4000
## 37   53.29829    11.90716   361.845786  3.9000 15.78406 11.70278  7.0000
## 38  117.48908    83.40662  1278.325953  2.8512 19.68004 22.06638 16.1639
## 39         NA    27.57822   107.795527 11.1000 39.33340 31.44122 18.0000
## 40  175.16013    68.78926   270.625631  1.4000 23.67910 22.42012  7.8000
## 41  139.57196    36.80590  2609.943503  2.8415 23.40664 22.34918  9.3242
## 42   72.26748    29.34950    15.062255 11.2000 32.40134 32.38396 19.0000
## 43   91.33396    31.42504  2707.744043  1.2157 17.99490 14.01296  5.5665
## 44  145.18138    62.38444    15.891616  2.3000 27.43172 19.16908 20.0000
## 45   50.13182    47.67084    67.471195 15.0000 26.24074 23.15904      NA
## 46   89.84441   134.16510   188.985393 26.9780 12.66678 10.94992 18.3000
## 47   72.98978     2.81678    77.604632  1.8301 14.07878 15.21612  4.0000
## 48   68.82672  -283.26700   349.444713  0.9024 21.19750 24.59920  6.5000
## 49   82.18115    32.12062    56.170837  7.1776 21.94236 25.00206  7.5000
## 50   79.03623    11.68846   155.013041  0.9250 24.36458 27.06952  4.4000
## 51   96.57359     9.73972  1062.299663  3.0600 33.99662 32.80276  6.5000
## 52   84.42461  -345.29200   417.683180  3.5406 34.89774 43.30982  6.5000
## 53   85.93030   -47.40690   403.526464  1.4760 21.12638 24.84940  4.5000
## 54   73.69553     0.68776  2660.261329  9.5000 31.20112 30.23156  7.5000
## 55         NA     1.49128   165.493039      NA 19.14184 22.59400 13.5000
## 56  160.95762    28.71610    21.714538  2.9022 20.96484 26.28896  7.8000
## 57  111.19617    50.94154  1880.708359      NA 17.86622 20.23166 10.8839
## 58   88.86704    38.11946    13.812422  2.8000 22.55048 21.29292  8.5000
## 59   93.88143    10.63962    43.697563  5.4000 18.98000 11.38420 22.0000
## 60   70.95343   -44.36040  5043.573440  1.0734 25.31864 27.87758  2.7383
## 61   87.40996    39.30272   100.470001 14.1390 17.13230 11.00750 11.4537
## 62  123.99717   -26.86070  1631.134780  1.0000 30.95906 36.10606  4.0000
## 63         NA  -271.87800   105.949023      NA 26.68898 32.14778      NA
## 64   83.52300   -38.63250   171.239891  7.9000 26.82074 26.28400  5.1000
## 65   89.13270    46.95208    80.676726  5.3000 29.69044 27.95642  5.0000
## 66   59.50145    12.39604     1.844513  4.1991 28.89906 16.64574 24.6500
## 67         NA    72.94226    19.129116  3.2000 33.45200 30.12460      NA
## 68   68.23179    16.85362    55.761983  0.9915 19.48272 20.31900  9.0000
## 69   42.65388 -1955.72000    73.055370  1.0280 18.38978 34.25134  6.8000
## 70   77.92536    22.27304    33.430044  3.5221 22.67616 23.11992  8.1000
## 71  102.28671    15.76728   112.869983  8.3515 32.29572 29.09784 11.5000
## 72   94.67722    23.32864    12.263700  3.2613 32.41148 31.85910 16.3000
## 73   77.34337   180.83030    13.269000 11.6788 32.50458 24.22642  7.3000
## 74   81.91411  -213.14400    24.333081  0.3357 19.61144 55.08932  2.4000
## 75   67.94252  -212.97000    14.474956  3.6629 22.98726 29.32880  4.3000
## 76   78.58290    -0.57864     3.767023  8.3000 20.09944 25.59820  6.5000
## 77   99.03247     8.52064  1073.915464  2.4292 22.74344 21.51140  4.0000
## 78  113.38897   -16.25250   336.664465  1.6600 24.38356 27.92792  4.0000
## 79   49.29687   282.81000    14.374968 11.8000 42.66772 15.14566      NA
## 80   91.29415    19.01378    10.710329  6.4000 20.90098 13.32220 23.0000
## 81   64.18761    -2.27422   401.028628  6.0000 18.31216 18.87146 22.0000
## 82   84.09234    50.63570    12.621466  4.1000 29.94454 26.86952  4.5000
## 83  161.74143    12.94086   910.005594      NA 21.16826 30.30356  4.6000
## 84  207.31980   -35.66660   362.571122      NA 28.22544 32.62790  4.2000
## 85  138.38958    51.69554   208.833638      NA 23.66948 21.26348  4.8000
## 86  148.12624    20.96404    64.648375  4.2000 26.17416 14.67168      NA
## 87  121.21618    39.83066    52.938074  2.1500 41.14624 36.51452 12.0000
## 88  116.71299   -20.74610   204.753978  4.1276 21.80948 20.42292  9.7000
## 89   74.25542   -12.25290   363.429119  1.6736 24.97170 24.32906  8.5000
## 90   61.34609    20.46164   262.232162  9.1000 16.10420 12.78448  6.5000
## 91   93.36164    27.71838   594.155788  3.7123 20.15800 20.38070  6.2000
## 92  113.24087    86.35888   230.736935  6.2000 17.22924 18.41932  7.1000
## 93  104.13747     9.42000    35.304238  4.9000 21.36214 23.25368  5.5000
## 94  163.71672     1.28492   146.400550  2.0000 42.35736 46.79924  0.1200
## 95   74.41554    18.74188   248.716040  4.0580 23.69546 20.98926  5.0000
## 96   90.19331    38.24144    52.960139  5.0000 20.81872 17.03374  9.7000
## 97  122.72076   -30.73920  1471.003881      NA 22.78718 27.47832  5.4000
## 98  111.94390    36.62538    10.332054  4.5000 22.69110 11.11020      NA
## 99         NA   -62.91130   700.117867      NA 29.55294 29.68834      NA
## 100  45.41537    31.39798     1.170879  3.8700 34.72552 17.38966  4.5000
##     Risk.Level
## 1          low
## 2          low
## 3          low
## 4          low
## 5         high
## 6         high
## 7         high
## 8          low
## 9          low
## 10        high
## 11        high
## 12        high
## 13         low
## 14         low
## 15        high
## 16        high
## 17        high
## 18        high
## 19        high
## 20         low
## 21        high
## 22         low
## 23        high
## 24         low
## 25        high
## 26         low
## 27        high
## 28        high
## 29        high
## 30        high
## 31         low
## 32         low
## 33         low
## 34        high
## 35        high
## 36         low
## 37        high
## 38         low
## 39        high
## 40         low
## 41         low
## 42        high
## 43         low
## 44        high
## 45        high
## 46        high
## 47        high
## 48         low
## 49        high
## 50         low
## 51         low
## 52         low
## 53         low
## 54        high
## 55        high
## 56         low
## 57        high
## 58        high
## 59        high
## 60         low
## 61        high
## 62         low
## 63         low
## 64         low
## 65        high
## 66        high
## 67        high
## 68         low
## 69         low
## 70         low
## 71        high
## 72        high
## 73        high
## 74         low
## 75         low
## 76        high
## 77        high
## 78         low
## 79        high
## 80        high
## 81        high
## 82        high
## 83         low
## 84         low
## 85         low
## 86        high
## 87        high
## 88         low
## 89         low
## 90        high
## 91         low
## 92         low
## 93        high
## 94         low
## 95        high
## 96        high
## 97         low
## 98        high
## 99         low
## 100       high

Melihat Struktur Data

str(data3)
## 'data.frame':    100 obs. of  16 variables:
##  $ Country   : Factor w/ 98 levels "AD","AE","AE-AZ",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ X1        : num  17.5 18.2 18.7 NA 14 ...
##  $ X2        : num  38675 40105 76038 27883 4251 ...
##  $ X3        : num  172.8 103.5 31 24.8 89.6 ...
##  $ X4        : num  0.68 1.77 2.63 1.29 1.44 ...
##  $ X5        : num  1.221 0.87 1.489 1.753 0.256 ...
##  $ X6        : num  1.79 2.66 1.85 2.23 4.75 ...
##  $ X7        : num  -2.084 -0.725 -1.901 -1.135 2.332 ...
##  $ X8        : num  55 103 103 103 167 ...
##  $ X9        : num  -26.5 -13.6 -56.2 24.8 47.3 ...
##  $ X10       : num  2.86 352.91 199.93 10.11 12.65 ...
##  $ X11       : num  8 8.15 8.15 NA 6.6 ...
##  $ X12       : num  23.1 24.9 20.4 21.7 19.4 ...
##  $ X13       : num  26.9 32.5 31 17.3 15.1 ...
##  $ X14       : num  3 2.45 NA NA 18.5 ...
##  $ Risk.Level: Factor w/ 2 levels "high","low": 2 2 2 2 1 1 1 2 2 1 ...

Menghapus Kolom Country

Penghapusan kolom country untuk memudahkan pengolahan data

data3 <- data3 %>% select(-Country)
head(data3)
##     X1        X2        X3       X4     X5       X6      X7        X8        X9
## 1 17.5 38674.616 172.75400  0.68000 1.2206  1.78560 -2.0843  55.00000 -26.52000
## 2 18.2 40105.120 103.52280  1.76600 0.8698  2.65884 -0.7254 102.52738 -13.59890
## 3 18.7 76037.997  31.03626  2.63056 1.4893  1.85034 -1.9008 102.52738 -56.24160
## 4   NA 27882.829  24.78532  1.29416 1.7530  2.23192 -1.1355 102.52738  24.78532
## 5 14.0  4251.398  89.61882  1.44000 0.2562  4.74800  2.3318 166.80851  47.27262
## 6   NA  2033.900  57.05566 22.35646 3.3422 -0.87800 -5.2032  34.81845  15.44938
##          X10    X11      X12      X13   X14 Risk.Level
## 1   2.857862  8.000 23.08410 26.94344  3.00        low
## 2 352.910575  8.155 24.85976 32.47740  2.45        low
## 3 199.928422  8.155 20.39940 31.03926    NA        low
## 4  10.108892     NA 21.69104 17.30888    NA        low
## 5  12.645460  6.600 19.40300 15.11172 18.50       high
## 6  62.485865 10.300 31.12380 20.57210 10.50       high

Ringkasan Statistik

summary(data3)
##        X1              X2                 X3                X4        
##  Min.   : 4.20   Min.   :   434.5   Min.   :  13.63   Min.   :-0.151  
##  1st Qu.:15.93   1st Qu.:  4265.9   1st Qu.:  42.96   1st Qu.: 0.869  
##  Median :18.58   Median : 11659.1   Median :  70.42   Median : 1.700  
##  Mean   :18.97   Mean   : 22641.6   Mean   : 191.94   Mean   : 3.263  
##  3rd Qu.:21.80   3rd Qu.: 34815.2   3rd Qu.: 130.63   3rd Qu.: 3.939  
##  Max.   :47.50   Max.   :124340.4   Max.   :6908.35   Max.   :36.703  
##  NA's   :12                                                           
##        X5                X6               X7                 X8        
##  Min.   :-0.8862   Min.   :-5.135   Min.   :-9.84530   Min.   : 34.82  
##  1st Qu.: 0.4419   1st Qu.: 1.765   1st Qu.:-1.18720   1st Qu.: 76.95  
##  Median : 1.1402   Median : 2.984   Median : 0.07155   Median : 90.19  
##  Mean   : 1.2019   Mean   : 3.076   Mean   : 0.10804   Mean   : 99.94  
##  3rd Qu.: 1.9502   3rd Qu.: 4.305   3rd Qu.: 1.94108   3rd Qu.:113.39  
##  Max.   : 4.4021   Max.   :10.076   Max.   : 6.07120   Max.   :359.14  
##                                                        NA's   :7       
##        X9                X10                 X11               X12       
##  Min.   :-1955.72   Min.   :    1.171   Min.   : 0.3357   Min.   :12.67  
##  1st Qu.:  -14.11   1st Qu.:   32.813   1st Qu.: 1.9250   1st Qu.:20.79  
##  Median :   12.67   Median :  106.872   Median : 3.9000   Median :23.40  
##  Mean   :  -13.58   Mean   :  582.318   Mean   : 5.5346   Mean   :24.96  
##  3rd Qu.:   36.67   3rd Qu.:  366.370   3rd Qu.: 7.9500   3rd Qu.:28.38  
##  Max.   :  456.49   Max.   :14866.703   Max.   :26.9780   Max.   :46.83  
##                                         NA's   :17                       
##       X13             X14         Risk.Level
##  Min.   :10.95   Min.   : 0.120   high:54   
##  1st Qu.:19.06   1st Qu.: 4.818   low :46   
##  Median :24.28   Median : 6.800             
##  Mean   :24.48   Mean   : 8.441             
##  3rd Qu.:29.36   3rd Qu.:10.500             
##  Max.   :55.09   Max.   :24.650             
##                  NA's   :11

Mengetahui jumlah data yang missing

Terdeteksi ada 47 data missing dari 1500 data yang ada

n_miss(data3)
## [1] 47
n_complete(data3)
## [1] 1453

Menampilkan PLot Data Missing

Dapat diketahui adanya missing data di X1,X8,X11,X14

dim(na.omit(data3))
## [1] 67 15
gg_miss_var(data3)

Memeriksa jumlah missing setiap variabel

sort(sapply(data3, function(x){sum(is.na(x))}), decreasing = TRUE)
##        X11         X1        X14         X8         X2         X3         X4 
##         17         12         11          7          0          0          0 
##         X5         X6         X7         X9        X10        X12        X13 
##          0          0          0          0          0          0          0 
## Risk.Level 
##          0

Menangani Missing Value

data_cleann <- na.omit(data3)
for(i in 1:14) {
  data3[is.na(data3[[i]]),i] <- mean(data3[[i]], na.rm = TRUE)
}
data3
##           X1          X2         X3       X4      X5       X6      X7        X8
## 1   17.50000  38674.6160  172.75400  0.68000  1.2206  1.78560 -2.0843  55.00000
## 2   18.20000  40105.1201  103.52280  1.76600  0.8698  2.65884 -0.7254 102.52738
## 3   18.70000  76037.9968   31.03626  2.63056  1.4893  1.85034 -1.9008 102.52738
## 4   18.97167  27882.8286   24.78532  1.29416  1.7530  2.23192 -1.1355 102.52738
## 5   14.00000   4251.3977   89.61882  1.44000  0.2562  4.74800  2.3318 166.80851
## 6   18.97167   2033.8999   57.05566 22.35646  3.3422 -0.87800 -5.2032  34.81845
## 7   23.25270   9203.4287   43.25546 36.70346  0.9657 -0.23680 -3.7297  99.94174
## 8   18.57400  53174.2385  159.39690  1.52348  0.7259  1.88048 -0.3001 116.41876
## 9   15.70000  63972.3400  121.98890  1.65124  1.4790  2.44592  0.0306 191.74943
## 10  33.50000  24642.7034   92.84624  1.21694  0.7972  2.06486 -4.7211  80.54508
## 11  25.30120   5083.2568   43.35272  6.85276  1.0510  0.39070 -1.7366 110.63987
## 12   4.20000   2323.5586   19.74352  5.81200  1.0568  7.39000  6.0712  78.40700
## 13  19.31880  49537.5785  256.72570  1.64000  0.5259  1.70044 -0.4905  90.42874
## 14  22.74060  11288.8489   70.29080  0.77854 -0.7095  3.61996  2.7008  72.99709
## 15  20.00000  22003.1172  214.20080  1.82200  4.4021  2.80902 -3.2531  99.94174
## 16  10.50000   1420.6492   49.56500  0.22520  2.7684  4.87736  2.2133  81.54536
## 17  12.28000   3372.3576   32.27932  2.92384  1.4362  3.95132 -0.0467 101.29834
## 18  19.14000   7372.9153   35.67380  5.72400  0.7789 -0.46082 -1.3423  76.95112
## 19  18.97167   6453.9238   69.54962  8.39000  0.0197  0.10000  0.6603 149.03716
## 20  16.09560  51704.8992  117.76010  1.67406  1.1918  1.79828 -0.5879 106.86400
## 21  22.30000   2378.0444   70.34826  2.03374  2.5889 -5.13500 -8.1338  84.09314
## 22  19.30000  89770.8521  275.61690  0.00116  0.8402  1.88522  0.1733  82.50000
## 23  18.97167   2594.7038   35.68100  0.75212  2.5779  7.29640  3.3099  83.29876
## 24  14.28000  15986.3031   65.82414  2.97824  1.2484  1.97106 -0.8925 116.51738
## 25   9.10000   1690.8639   39.74812  1.54052  2.6442  4.35350  0.7177  87.68676
## 26  14.70450  12226.6610   13.63044  2.00000  0.4575  6.64354  5.2661  94.22575
## 27  17.20000   5859.6535   47.58910  4.70940  1.3766  2.44972 -0.8876 117.32727
## 28  13.28400  11954.5890   44.98044  1.34600  0.9961  3.24766  0.7026 125.26214
## 29  19.42000   3466.2500  115.31060  0.37920  1.1636  3.92138 -0.4036  67.45486
## 30  16.00000  30630.2905 1026.49500 -0.15102  0.1535  4.62534  2.8078  68.15254
## 31  21.37960  27044.7929   79.21186  1.57500  0.2067  3.72134  1.3165  76.50765
## 32  18.58000  50891.5812  165.29300  1.20768  0.4835  1.62892 -0.1226 138.35724
## 33  22.60000  67565.6556  155.84030  0.54000  0.3613  2.68708  1.3106 359.13886
## 34  18.65000   8172.2496   42.49502  2.22228  0.9213  6.05690  2.4036  80.10580
## 35  13.40000   5830.4242   49.66284  1.23328  1.7062  0.50846 -2.7675  99.71869
## 36  25.31200  26427.0455   84.20358  2.03974  0.2136  3.94866  2.6995 104.68417
## 37  20.10000   3756.4221   31.92960 16.16054  2.0540  4.44796  2.2412  53.29829
## 38  16.98220  30488.0476  176.49180  0.71830  0.3949  2.84406 -0.4857 117.48908
## 39  18.97167    891.6737   33.04222 10.37682  2.6572  9.06000  5.5428  99.94174
## 40  20.10000  53937.2819  257.89490  0.67100  0.2165  1.82644  0.9465 175.16013
## 41  19.65010  44939.9046  247.44200  0.99026  0.2532  1.63728 -0.4225 139.57196
## 42  18.97167   7803.8309   39.13694  2.80396  2.7047  2.25300 -1.5934  72.26748
## 43  21.60000  46723.9041  406.04150  1.53050  0.6090  1.70254 -1.3484  91.33396
## 44  17.60000   4422.7082  104.45110  3.93800 -0.0317  4.12018  2.3147 145.18138
## 45  15.00000   2353.8541   59.62672 12.94200  2.2431  5.29400  2.6949  50.13182
## 46  16.66430  19404.1830  239.31940  0.26994 -0.2217  0.75896 -0.5866  89.84441
## 47  16.10000   4478.2807   34.07538  3.74200  1.9677  3.40778  0.3178  72.98978
## 48  20.70000  50214.6484  446.31540  2.43600  0.8510  1.99164 -0.5657  68.82672
## 49  25.50000  16617.8744   89.53644  0.55302 -0.7565  3.00696  1.6712  82.18115
## 50  18.28020  18224.0904  115.04970  1.84622 -0.2417  4.07978  2.5449  79.03623
## 51  23.90000   4223.4646   35.44648  3.94398  1.1454  5.03546  2.5001  96.57359
## 52  25.46920  91715.2029  815.34610  0.32334  1.1977 10.07624  4.5268  84.42461
## 53  18.97167  50813.0432   26.75248  0.14240  1.6423  3.36048  0.7084  85.93030
## 54  13.60000   2218.5362   20.80796  4.24752  1.0491  6.72450  2.6258  73.69553
## 55  18.97167   4270.7893   37.55918  0.44192  2.4876  3.80000 -1.3546  99.94174
## 56  24.82000  66458.8741  108.86200  0.41926  2.0438  4.63556  0.3121 160.95762
## 57  16.00000  34641.2557  129.37690  0.65218 -0.0396  0.98170 -0.8850 111.19617
## 58  14.30000   4938.6880   90.75014  3.60208  0.4806  1.18000 -1.4606  88.86704
## 59  17.93000   4433.1037   70.49410  1.37566  1.9443  2.02956 -0.6875  93.88143
## 60  17.30000  40838.2838   75.76394  0.51938 -0.1929  0.91240 -0.1394  70.95343
## 61  18.44440   2025.2907   52.90428  6.28796  2.8000  5.62820  1.9242  87.40996
## 62  14.80000  35337.0758   26.36510  1.09614  0.3751  2.77248  1.6542 123.99717
## 63  18.97167  30276.8754   47.57912  1.88400  1.9857  0.13772 -3.7375  99.94174
## 64  26.97000  10589.0517   56.21532  7.95000  1.3350  3.00000  0.9054  83.52300
## 65  16.50000   3822.1732   59.36342  4.21800  0.8755  3.67800  1.0805  89.13270
## 66  22.95200   1010.6177   61.18192  5.00340  0.7958  0.39388 -3.2384  59.50145
## 67  11.00000   2637.6890   85.47152  1.81194  1.5534  6.57820  3.6709  99.94174
## 68  21.80730  22636.1217   78.06336  1.69862 -0.8862  3.42028  3.7273  68.23179
## 69  23.90000 124340.3835 6908.35200  1.17428  2.0218  3.22626  0.0792  42.65388
## 70  24.96800  19638.1070  134.37960  1.70144 -0.7032  3.13634  2.3134  77.92536
## 71  15.20000   3301.6090   45.30954  1.18800  1.2641  3.09514 -0.4997 102.28671
## 72  16.69660   6571.8228   72.20372  0.62200  0.0389  2.77890  1.0689  94.67722
## 73  18.97167   4393.3037  218.85680  4.98958  1.8006  4.25820  0.9093  77.34337
## 74  14.50000  52074.0604  194.62240  2.78282  1.2126 -1.66952 -9.8453  81.91411
## 75  23.96000  31441.2784  761.28590  1.32032  3.1949  6.53774 -0.1381  67.94252
## 76  47.50000   8656.5566   35.18078  0.88000  3.5095  6.30000 -3.6495  78.58290
## 77  17.70000   9729.2631   37.27282  4.02524  1.1350  2.01104 -1.4444  99.03247
## 78  18.30000  11363.6075   65.23842  1.91000  1.3474  4.87800  1.3926 113.38897
## 79  26.00000    434.4606  356.19670  9.04260  2.9384  3.92880 -0.4276  49.29687
## 80  15.20000   5051.3480   60.48620  4.85712  1.8806  0.75446 -3.5756  91.29415
## 81  15.40000   2149.7791   24.81464 12.94034  2.6197  1.19458 -2.3145  64.18761
## 82  21.75000   1986.7204   83.97706  4.34306  1.0414  1.37996 -1.0152  84.09234
## 83  18.90260  57230.6715  512.18330  1.17730  0.5927  2.21984  0.4875 161.74143
## 84  23.10000  82858.2833  155.89490  2.61900  0.8375  1.46654  0.1530 207.31980
## 85  18.97167  48925.4692  103.06840  1.20152  2.0008  3.39204  0.0639 138.38958
## 86  19.10000  14957.4883   88.59674  0.76000  2.3197  1.99976 -2.3013 148.12624
## 87  16.25000  13872.7952  156.66240  0.42400  1.6872  4.58302 -1.8406 121.21618
## 88  15.58880   6528.2061   35.38870  2.69720  1.0511  3.17022 -0.7479 116.71299
## 89  14.93960   3658.9600   32.33956  2.49528  1.4217  6.56308  1.9917  74.25542
## 90  17.20000   1406.1297   29.25594  4.73824  1.8710  4.29018  1.5142  61.34609
## 91  20.14900  17732.6481   67.90290  0.80874 -0.0948  4.34840  3.1314  93.36164
## 92  16.70000  25282.8171  203.15930  0.83600 -0.3333  2.53122  0.9934 113.24087
## 93  19.10000   5054.1153   43.10920  3.52000  1.2931  2.96754  0.8830 104.13747
## 94  18.80000  55338.4835  108.79850  0.82252  2.3456  1.66590 -2.3610 163.71672
## 95  23.20000  14981.8900   52.57054  1.51808 -0.5878  4.71770  3.9390  74.41554
## 96  21.80000   8768.7320   86.54676  1.90000 -0.5088  3.17400  3.1268  90.19331
## 97  12.70000  10274.3779   33.40582  6.72076  0.1073  0.97740  0.6743 122.72076
## 98  23.30000    825.5581   52.98370  4.20636  2.6417  7.36908  2.2852 111.94390
## 99  18.97167  21664.6362   48.19680  0.76200  2.5009  1.56022 -2.5833  99.94174
## 100 19.02000  13490.5158  109.22200  1.18702  1.0858  3.51306 -1.1137  45.41537
##              X9          X10       X11      X12      X13       X14 Risk.Level
## 1     -26.52000     2.857862  8.000000 23.08410 26.94344  3.000000        low
## 2     -13.59890   352.910575  8.155000 24.85976 32.47740  2.450000        low
## 3     -56.24160   199.928422  8.155000 20.39940 31.03926  8.440889        low
## 4      24.78532    10.108892  5.534602 21.69104 17.30888  8.440889        low
## 5      47.27262    12.645460  6.600000 19.40300 15.11172 18.500000       high
## 6      15.44938    62.485865 10.300000 31.12380 20.57210 10.500000       high
## 7      -5.01348   375.190755 10.600000 16.71368 13.81918 11.050000       high
## 8      15.36980   429.980978  2.019000 24.78244 26.89982  6.000000        low
## 9      57.95768  1359.132847  0.960000 24.28828 22.49670  5.447800        low
## 10     28.09668     2.383969  5.000000 21.13634 24.49756  8.000000       high
## 11   -174.36800    42.607177  5.534602 23.63816 29.44668  7.000000       high
## 12      4.91586   347.147671  7.700000 32.70006 32.19390  5.000000       high
## 13    -18.98450   514.176961  5.534602 24.55938 24.73148  6.000000        low
## 14    -12.95970    69.103768  5.798400 20.46028 23.25440  5.300000        low
## 15    -51.11920    34.539229  5.534602 31.14198 28.74462  4.000000       high
## 16     20.59038    15.355253 17.000000 23.40036 19.12786  2.300000       high
## 17    -20.17800    37.238307  5.534602 20.84156 16.34698  8.500000       high
## 18     10.01940  1444.733210  5.534602 15.49512 13.50872 13.950000       high
## 19     42.60472    60.258857  4.829200 28.15432 18.39389  4.500000       high
## 20     45.53354  1721.506090  0.533300 23.26748 20.61472  7.450300        low
## 21     54.86688     9.707663 24.400000 46.82746 35.13040  8.440889       high
## 22   -152.44500   749.017673  0.750000 24.41888 32.83370  3.172800        low
## 23      7.37624    61.348608  8.800000 20.82476 19.42264 12.000000       high
## 24     14.00910   252.940034  1.722900 22.48684 20.37026 10.000000        low
## 25     26.04546    40.349134 20.000000 28.82414 25.75278  8.440889       high
## 26    -26.98080 14866.703370  1.839600 43.17774 44.69396  4.900000        low
## 27      9.92820   271.346897  3.180000 22.22970 18.09570 13.000000       high
## 28      1.74676    61.520675  2.700000 17.93502 15.88014 15.000000       high
## 29     51.37952     1.703701  9.520000 35.67148 32.54966 15.800000       high
## 30    456.48640    23.804052  5.534602 17.90342 14.38300  7.800000       high
## 31    -16.61460   243.530380  2.656200 27.97028 30.60572  3.400000        low
## 32    -15.64810  3793.593164  5.534602 20.71144 28.03106  4.817700        low
## 33     -5.59082   355.184032  1.800000 22.06322 29.24874  5.400000        low
## 34     20.97700    79.001191  1.850000 23.77748 23.65308  5.700000       high
## 35      8.90856    98.808010  5.534602 26.15664 26.23654  7.200000       high
## 36    -13.26730    30.960228  0.379100 26.20832 28.47148  6.400000        low
## 37     11.90716   361.845786  3.900000 15.78406 11.70278  7.000000       high
## 38     83.40662  1278.325953  2.851200 19.68004 22.06638 16.163900        low
## 39     27.57822   107.795527 11.100000 39.33340 31.44122 18.000000       high
## 40     68.78926   270.625631  1.400000 23.67910 22.42012  7.800000        low
## 41     36.80590  2609.943503  2.841500 23.40664 22.34918  9.324200        low
## 42     29.34950    15.062255 11.200000 32.40134 32.38396 19.000000       high
## 43     31.42504  2707.744043  1.215700 17.99490 14.01296  5.566500        low
## 44     62.38444    15.891616  2.300000 27.43172 19.16908 20.000000       high
## 45     47.67084    67.471195 15.000000 26.24074 23.15904  8.440889       high
## 46    134.16510   188.985393 26.978000 12.66678 10.94992 18.300000       high
## 47      2.81678    77.604632  1.830100 14.07878 15.21612  4.000000       high
## 48   -283.26700   349.444713  0.902400 21.19750 24.59920  6.500000        low
## 49     32.12062    56.170837  7.177600 21.94236 25.00206  7.500000       high
## 50     11.68846   155.013041  0.925000 24.36458 27.06952  4.400000        low
## 51      9.73972  1062.299663  3.060000 33.99662 32.80276  6.500000        low
## 52   -345.29200   417.683180  3.540600 34.89774 43.30982  6.500000        low
## 53    -47.40690   403.526464  1.476000 21.12638 24.84940  4.500000        low
## 54      0.68776  2660.261329  9.500000 31.20112 30.23156  7.500000       high
## 55      1.49128   165.493039  5.534602 19.14184 22.59400 13.500000       high
## 56     28.71610    21.714538  2.902200 20.96484 26.28896  7.800000        low
## 57     50.94154  1880.708359  5.534602 17.86622 20.23166 10.883900       high
## 58     38.11946    13.812422  2.800000 22.55048 21.29292  8.500000       high
## 59     10.63962    43.697563  5.400000 18.98000 11.38420 22.000000       high
## 60    -44.36040  5043.573440  1.073400 25.31864 27.87758  2.738300        low
## 61     39.30272   100.470001 14.139000 17.13230 11.00750 11.453700       high
## 62    -26.86070  1631.134780  1.000000 30.95906 36.10606  4.000000        low
## 63   -271.87800   105.949023  5.534602 26.68898 32.14778  8.440889        low
## 64    -38.63250   171.239891  7.900000 26.82074 26.28400  5.100000        low
## 65     46.95208    80.676726  5.300000 29.69044 27.95642  5.000000       high
## 66     12.39604     1.844513  4.199100 28.89906 16.64574 24.650000       high
## 67     72.94226    19.129116  3.200000 33.45200 30.12460  8.440889       high
## 68     16.85362    55.761983  0.991500 19.48272 20.31900  9.000000        low
## 69  -1955.72000    73.055370  1.028000 18.38978 34.25134  6.800000        low
## 70     22.27304    33.430044  3.522100 22.67616 23.11992  8.100000        low
## 71     15.76728   112.869983  8.351500 32.29572 29.09784 11.500000       high
## 72     23.32864    12.263700  3.261300 32.41148 31.85910 16.300000       high
## 73    180.83030    13.269000 11.678800 32.50458 24.22642  7.300000       high
## 74   -213.14400    24.333081  0.335700 19.61144 55.08932  2.400000        low
## 75   -212.97000    14.474956  3.662900 22.98726 29.32880  4.300000        low
## 76     -0.57864     3.767023  8.300000 20.09944 25.59820  6.500000       high
## 77      8.52064  1073.915464  2.429200 22.74344 21.51140  4.000000       high
## 78    -16.25250   336.664465  1.660000 24.38356 27.92792  4.000000        low
## 79    282.81000    14.374968 11.800000 42.66772 15.14566  8.440889       high
## 80     19.01378    10.710329  6.400000 20.90098 13.32220 23.000000       high
## 81     -2.27422   401.028628  6.000000 18.31216 18.87146 22.000000       high
## 82     50.63570    12.621466  4.100000 29.94454 26.86952  4.500000       high
## 83     12.94086   910.005594  5.534602 21.16826 30.30356  4.600000        low
## 84    -35.66660   362.571122  5.534602 28.22544 32.62790  4.200000        low
## 85     51.69554   208.833638  5.534602 23.66948 21.26348  4.800000        low
## 86     20.96404    64.648375  4.200000 26.17416 14.67168  8.440889       high
## 87     39.83066    52.938074  2.150000 41.14624 36.51452 12.000000       high
## 88    -20.74610   204.753978  4.127600 21.80948 20.42292  9.700000        low
## 89    -12.25290   363.429119  1.673600 24.97170 24.32906  8.500000        low
## 90     20.46164   262.232162  9.100000 16.10420 12.78448  6.500000       high
## 91     27.71838   594.155788  3.712300 20.15800 20.38070  6.200000        low
## 92     86.35888   230.736935  6.200000 17.22924 18.41932  7.100000        low
## 93      9.42000    35.304238  4.900000 21.36214 23.25368  5.500000       high
## 94      1.28492   146.400550  2.000000 42.35736 46.79924  0.120000        low
## 95     18.74188   248.716040  4.058000 23.69546 20.98926  5.000000       high
## 96     38.24144    52.960139  5.000000 20.81872 17.03374  9.700000       high
## 97    -30.73920  1471.003881  5.534602 22.78718 27.47832  5.400000        low
## 98     36.62538    10.332054  4.500000 22.69110 11.11020  8.440889       high
## 99    -62.91130   700.117867  5.534602 29.55294 29.68834  8.440889        low
## 100    31.39798     1.170879  3.870000 34.72552 17.38966  4.500000       high

Split Data

Data dibagi menjadi dua data, yaitu data training dan data testing. Data training yang digunakan untuk membuat model dengan proporsi data 0,7 artinya 70% dari data akan digunakan untuk melatih model dan 30% untuk menguji model

set.seed(123)
index <- createDataPartition(data3$Risk.Level, p = 0.7, list = FALSE)
train_data1 <- data3[index, ]
test_data1 <- data3[-index, ]
head(train_data1)
##         X1        X2        X3       X4     X5       X6      X7        X8
## 1  17.5000 38674.616 172.75400  0.68000 1.2206  1.78560 -2.0843  55.00000
## 2  18.2000 40105.120 103.52280  1.76600 0.8698  2.65884 -0.7254 102.52738
## 7  23.2527  9203.429  43.25546 36.70346 0.9657 -0.23680 -3.7297  99.94174
## 8  18.5740 53174.238 159.39690  1.52348 0.7259  1.88048 -0.3001 116.41876
## 9  15.7000 63972.340 121.98890  1.65124 1.4790  2.44592  0.0306 191.74943
## 10 33.5000 24642.703  92.84624  1.21694 0.7972  2.06486 -4.7211  80.54508
##           X9         X10    X11      X12      X13     X14 Risk.Level
## 1  -26.52000    2.857862  8.000 23.08410 26.94344  3.0000        low
## 2  -13.59890  352.910575  8.155 24.85976 32.47740  2.4500        low
## 7   -5.01348  375.190755 10.600 16.71368 13.81918 11.0500       high
## 8   15.36980  429.980978  2.019 24.78244 26.89982  6.0000        low
## 9   57.95768 1359.132847  0.960 24.28828 22.49670  5.4478        low
## 10  28.09668    2.383969  5.000 21.13634 24.49756  8.0000       high
head(test_data1)
##          X1        X2        X3       X4     X5       X6      X7        X8
## 3  18.70000 76037.997  31.03626  2.63056 1.4893  1.85034 -1.9008 102.52738
## 4  18.97167 27882.829  24.78532  1.29416 1.7530  2.23192 -1.1355 102.52738
## 5  14.00000  4251.398  89.61882  1.44000 0.2562  4.74800  2.3318 166.80851
## 6  18.97167  2033.900  57.05566 22.35646 3.3422 -0.87800 -5.2032  34.81845
## 12  4.20000  2323.559  19.74352  5.81200 1.0568  7.39000  6.0712  78.40700
## 22 19.30000 89770.852 275.61690  0.00116 0.8402  1.88522  0.1733  82.50000
##            X9       X10       X11      X12      X13       X14 Risk.Level
## 3   -56.24160 199.92842  8.155000 20.39940 31.03926  8.440889        low
## 4    24.78532  10.10889  5.534602 21.69104 17.30888  8.440889        low
## 5    47.27262  12.64546  6.600000 19.40300 15.11172 18.500000       high
## 6    15.44938  62.48586 10.300000 31.12380 20.57210 10.500000       high
## 12    4.91586 347.14767  7.700000 32.70006 32.19390  5.000000       high
## 22 -152.44500 749.01767  0.750000 24.41888 32.83370  3.172800        low

Model

A-priori probabilities menunjukkan probabilitas awal sebelum mempertimbangkan prediktor. Prediktor itu adalah X1,X2,X3,….,X14

nb_model <- naiveBayes(Risk.Level ~ ., data = train_data1)

print(nb_model)
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##      high       low 
## 0.5352113 0.4647887 
## 
## Conditional probabilities:
##       X1
## Y          [,1]     [,2]
##   high 18.77331 4.677976
##   low  19.36531 3.585969
## 
##       X2
## Y           [,1]      [,2]
##   high  7787.785  7648.396
##   low  38703.461 25699.486
## 
##       X3
## Y           [,1]       [,2]
##   high  79.79265   66.16116
##   low  326.89118 1185.82721
## 
##       X4
## Y          [,1]     [,2]
##   high 4.512117 6.513642
##   low  1.886997 1.651655
## 
##       X5
## Y           [,1]      [,2]
##   high 1.4678395 1.1552325
##   low  0.8458121 0.8408339
## 
##       X6
## Y          [,1]     [,2]
##   high 3.264319 2.659449
##   low  2.600328 1.569226
## 
##       X7
## Y            [,1]     [,2]
##   high 0.05282632 2.718461
##   low  0.12402424 2.597326
## 
##       X8
## Y           [,1]     [,2]
##   high  90.34624 22.77071
##   low  114.16546 57.74593
## 
##       X9
## Y           [,1]      [,2]
##   high  28.17189  60.85595
##   low  -84.19230 345.84389
## 
##       X10
## Y           [,1]      [,2]
##   high  258.9664  565.9536
##   low  1095.9332 2665.5127
## 
##       X11
## Y          [,1]     [,2]
##   high 7.728421 6.056065
##   low  3.106706 2.422555
## 
##       X12
## Y          [,1]     [,2]
##   high 25.63437 8.288804
##   low  24.84673 5.961012
## 
##       X13
## Y          [,1]     [,2]
##   high 21.47126 7.469668
##   low  28.23034 8.406431
## 
##       X14
## Y          [,1]     [,2]
##   high 9.711153 5.054527
##   low  5.698627 2.253403

Prediksi

15 kasus high diprediksi dengan benar 8 kasus low diprediksi dengan benar 5 kasus ‘high’ salah prediksi sebagai ‘low’ 1 kasus ‘low’ yang salah prrediksi sebagai ‘high’

Dengan tingkat kepercayaan 95%, akurasi sebenarnya dari model tersebut berada diantara 60.28% dan 92.01%

Pada McNemar’s, p-value > 0.05 menunjukkan tidak ada perbedaan signifikan dalam proporsi kesalahan prediksi antar kelas

Model ini memiliki performa yang cukup baik dengan akurasi yaitu 79.31%.

Model ini cenderung lebih baik dalam memprediksi kasus ‘high’ dibandingkan ‘low’. Hal tersebut di dukung dengan nilai sensivity kelas high, sebesar 93,75%

testing_predik <- predict(nb_model, newdata = test_data1)
  
confusionMatrix(testing_predik, test_data1$Risk.Level)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction high low
##       high   15   5
##       low     1   8
##                                           
##                Accuracy : 0.7931          
##                  95% CI : (0.6028, 0.9201)
##     No Information Rate : 0.5517          
##     P-Value [Acc > NIR] : 0.00619         
##                                           
##                   Kappa : 0.5693          
##                                           
##  Mcnemar's Test P-Value : 0.22067         
##                                           
##             Sensitivity : 0.9375          
##             Specificity : 0.6154          
##          Pos Pred Value : 0.7500          
##          Neg Pred Value : 0.8889          
##              Prevalence : 0.5517          
##          Detection Rate : 0.5172          
##    Detection Prevalence : 0.6897          
##       Balanced Accuracy : 0.7764          
##                                           
##        'Positive' Class : high            
## 

Memanggil Data Testing

testing_data<- read.csv("data_testing.csv", stringsAsFactors = TRUE)
testing_data
##         X1         X2        X3       X4      X5      X6      X7        X8
## 1  23.2000 60338.0204 175.42230  1.62000  0.6755 2.47168  0.3526 185.64097
## 2  16.8056 62432.9952 409.69700  0.10510  0.9068 2.77600  0.2912  94.00211
## 3  18.2857 28684.1682 103.06040  0.84352  0.0746 3.55290  1.9299  72.30708
## 4  19.6715 21042.7221 102.73060  1.17400  0.0734 3.21976  1.2325 111.78982
## 5  11.9000 49356.2618  60.15464  0.89594  0.5865 1.75420 -1.1342  88.60514
## 6       NA  3989.1913  65.55750  0.39400  0.5042 2.44734 -0.1248  88.88685
## 7  19.8000  7450.5523  33.22256  0.34500  0.3153 3.44058  1.2787 100.19298
## 8  12.9000  3616.8650  85.26668  5.55600  1.1173 1.60820 -1.5047 134.47988
## 9  18.0000  8652.9973  51.65878 11.65444  1.4844 4.15702  1.8070 116.52826
## 10 14.1400 31854.2815  48.51016  0.72360  0.1015 2.53870  2.7686  71.08310
## 11 22.0000  3955.0704 103.90710 19.17300 -0.3906 0.34000  1.8906  72.25639
## 12 21.5689   786.8776  42.26784  4.29470  3.6551 5.73874  0.4207  69.45587
## 13 16.3000 69324.7338 104.17110  1.55316  0.6255 2.45554  0.4867        NA
## 14 17.0400 15968.2306  73.01010  8.00348  0.3592 0.82090 -0.7169  49.05568
## 15 18.4000  1872.6699  30.04996 12.29840  1.6065 5.84000  3.0735        NA
## 16 12.0977  3886.5162  34.52492  2.79600  0.8506 6.94570  5.2762  86.56201
## 17 16.6000  6404.6725  50.79576  4.98278  1.4772 0.78940 -2.3230 107.24859
##            X9          X10     X11      X12      X13     X14
## 1    64.14972   537.609866  0.5000 25.11320 27.95256  8.6000
## 2  -200.98100   339.988210  1.3095 26.76784 47.25374  3.0000
## 3    16.23838    52.761781  3.0176 19.90742 25.76882  5.0000
## 4    33.35258   102.567122  2.5300 22.83084 20.95780  7.0000
## 5  -145.43800     1.490827 63.5000 17.79208 23.21144  7.3000
## 6    27.33332    24.638720  1.5706 16.78238 14.52982  9.0000
## 7   -42.56340   501.644054  3.2000 23.05990 32.47950  2.0000
## 8    64.46288    39.218118 13.6000 18.80654  8.88180 17.0000
## 9    28.56998   720.244499      NA 28.55834 26.32778 13.2000
## 10 -189.14000   668.122597      NA 22.02936 33.80118  3.7000
## 11   -5.46582   155.581868 49.0000 17.79388 16.04966  9.5000
## 12   21.88058    33.538172  3.3357 24.85996 19.47826      NA
## 13   47.70210 20935.000000  1.0000 17.40650 17.20802  5.6146
## 14  -16.23150    53.628838      NA 16.44666 17.57796 10.3000
## 15  -45.16010    57.707193  2.1000 31.60162 29.24286  6.0000
## 16    7.39622   351.683014  1.6900 23.54764 25.80812  2.5000
## 17   15.04496   302.141270      NA 19.11740 16.25316 33.7000

Mengatasi Missing Value

data_clean <- na.omit(testing_data)
for(i in 1:14) {
  testing_data[is.na(testing_data[[i]]),i] <- mean(testing_data[[i]], na.rm = TRUE)
}
testing_data
##          X1         X2        X3       X4      X5      X6      X7        X8
## 1  23.20000 60338.0204 175.42230  1.62000  0.6755 2.47168  0.3526 185.64097
## 2  16.80560 62432.9952 409.69700  0.10510  0.9068 2.77600  0.2912  94.00211
## 3  18.28570 28684.1682 103.06040  0.84352  0.0746 3.55290  1.9299  72.30708
## 4  19.67150 21042.7221 102.73060  1.17400  0.0734 3.21976  1.2325 111.78982
## 5  11.90000 49356.2618  60.15464  0.89594  0.5865 1.75420 -1.1342  88.60514
## 6  17.41934  3989.1913  65.55750  0.39400  0.5042 2.44734 -0.1248  88.88685
## 7  19.80000  7450.5523  33.22256  0.34500  0.3153 3.44058  1.2787 100.19298
## 8  12.90000  3616.8650  85.26668  5.55600  1.1173 1.60820 -1.5047 134.47988
## 9  18.00000  8652.9973  51.65878 11.65444  1.4844 4.15702  1.8070 116.52826
## 10 14.14000 31854.2815  48.51016  0.72360  0.1015 2.53870  2.7686  71.08310
## 11 22.00000  3955.0704 103.90710 19.17300 -0.3906 0.34000  1.8906  72.25639
## 12 21.56890   786.8776  42.26784  4.29470  3.6551 5.73874  0.4207  69.45587
## 13 16.30000 69324.7338 104.17110  1.55316  0.6255 2.45554  0.4867  96.53965
## 14 17.04000 15968.2306  73.01010  8.00348  0.3592 0.82090 -0.7169  49.05568
## 15 18.40000  1872.6699  30.04996 12.29840  1.6065 5.84000  3.0735  96.53965
## 16 12.09770  3886.5162  34.52492  2.79600  0.8506 6.94570  5.2762  86.56201
## 17 16.60000  6404.6725  50.79576  4.98278  1.4772 0.78940 -2.3230 107.24859
##            X9          X10      X11      X12      X13       X14
## 1    64.14972   537.609866  0.50000 25.11320 27.95256  8.600000
## 2  -200.98100   339.988210  1.30950 26.76784 47.25374  3.000000
## 3    16.23838    52.761781  3.01760 19.90742 25.76882  5.000000
## 4    33.35258   102.567122  2.53000 22.83084 20.95780  7.000000
## 5  -145.43800     1.490827 63.50000 17.79208 23.21144  7.300000
## 6    27.33332    24.638720  1.57060 16.78238 14.52982  9.000000
## 7   -42.56340   501.644054  3.20000 23.05990 32.47950  2.000000
## 8    64.46288    39.218118 13.60000 18.80654  8.88180 17.000000
## 9    28.56998   720.244499 11.25795 28.55834 26.32778 13.200000
## 10 -189.14000   668.122597 11.25795 22.02936 33.80118  3.700000
## 11   -5.46582   155.581868 49.00000 17.79388 16.04966  9.500000
## 12   21.88058    33.538172  3.33570 24.85996 19.47826  8.963413
## 13   47.70210 20935.000000  1.00000 17.40650 17.20802  5.614600
## 14  -16.23150    53.628838 11.25795 16.44666 17.57796 10.300000
## 15  -45.16010    57.707193  2.10000 31.60162 29.24286  6.000000
## 16    7.39622   351.683014  1.69000 23.54764 25.80812  2.500000
## 17   15.04496   302.141270 11.25795 19.11740 16.25316 33.700000

Memprediksi Data Testing

Prediksi dilakukan dengan menggunakan model Naive Bayes

new_prediction <- predict(nb_model, newdata = testing_data)
print(new_prediction)
##  [1] low  low  low  high high high high high high low  high high low  high high
## [16] high high
## Levels: high low

Berikut ini disertakan data dan prediksinya agar mudah dimengerti

hasil_prediksi <- cbind(testing_data, prediksi = new_prediction)
print(hasil_prediksi)
##          X1         X2        X3       X4      X5      X6      X7        X8
## 1  23.20000 60338.0204 175.42230  1.62000  0.6755 2.47168  0.3526 185.64097
## 2  16.80560 62432.9952 409.69700  0.10510  0.9068 2.77600  0.2912  94.00211
## 3  18.28570 28684.1682 103.06040  0.84352  0.0746 3.55290  1.9299  72.30708
## 4  19.67150 21042.7221 102.73060  1.17400  0.0734 3.21976  1.2325 111.78982
## 5  11.90000 49356.2618  60.15464  0.89594  0.5865 1.75420 -1.1342  88.60514
## 6  17.41934  3989.1913  65.55750  0.39400  0.5042 2.44734 -0.1248  88.88685
## 7  19.80000  7450.5523  33.22256  0.34500  0.3153 3.44058  1.2787 100.19298
## 8  12.90000  3616.8650  85.26668  5.55600  1.1173 1.60820 -1.5047 134.47988
## 9  18.00000  8652.9973  51.65878 11.65444  1.4844 4.15702  1.8070 116.52826
## 10 14.14000 31854.2815  48.51016  0.72360  0.1015 2.53870  2.7686  71.08310
## 11 22.00000  3955.0704 103.90710 19.17300 -0.3906 0.34000  1.8906  72.25639
## 12 21.56890   786.8776  42.26784  4.29470  3.6551 5.73874  0.4207  69.45587
## 13 16.30000 69324.7338 104.17110  1.55316  0.6255 2.45554  0.4867  96.53965
## 14 17.04000 15968.2306  73.01010  8.00348  0.3592 0.82090 -0.7169  49.05568
## 15 18.40000  1872.6699  30.04996 12.29840  1.6065 5.84000  3.0735  96.53965
## 16 12.09770  3886.5162  34.52492  2.79600  0.8506 6.94570  5.2762  86.56201
## 17 16.60000  6404.6725  50.79576  4.98278  1.4772 0.78940 -2.3230 107.24859
##            X9          X10      X11      X12      X13       X14 prediksi
## 1    64.14972   537.609866  0.50000 25.11320 27.95256  8.600000      low
## 2  -200.98100   339.988210  1.30950 26.76784 47.25374  3.000000      low
## 3    16.23838    52.761781  3.01760 19.90742 25.76882  5.000000      low
## 4    33.35258   102.567122  2.53000 22.83084 20.95780  7.000000     high
## 5  -145.43800     1.490827 63.50000 17.79208 23.21144  7.300000     high
## 6    27.33332    24.638720  1.57060 16.78238 14.52982  9.000000     high
## 7   -42.56340   501.644054  3.20000 23.05990 32.47950  2.000000     high
## 8    64.46288    39.218118 13.60000 18.80654  8.88180 17.000000     high
## 9    28.56998   720.244499 11.25795 28.55834 26.32778 13.200000     high
## 10 -189.14000   668.122597 11.25795 22.02936 33.80118  3.700000      low
## 11   -5.46582   155.581868 49.00000 17.79388 16.04966  9.500000     high
## 12   21.88058    33.538172  3.33570 24.85996 19.47826  8.963413     high
## 13   47.70210 20935.000000  1.00000 17.40650 17.20802  5.614600      low
## 14  -16.23150    53.628838 11.25795 16.44666 17.57796 10.300000     high
## 15  -45.16010    57.707193  2.10000 31.60162 29.24286  6.000000     high
## 16    7.39622   351.683014  1.69000 23.54764 25.80812  2.500000     high
## 17   15.04496   302.141270 11.25795 19.11740 16.25316 33.700000     high