library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(stringr)
library(scales)
library(readxl)
bike_orderlines <- read_excel("./bike_orderlines.xlsx")
bike_orderlines %>%
group_by(category_1, category_2, frame_material) %>%
summarise(sales=sum(total_price)) %>%
ungroup() %>%
rename(
`Prime category` = category_1,
`Secondary category` = category_2,
`Frame Material` = frame_material) %>%
mutate(Sales = dollar(sales)
)
## `summarise()` has grouped output by 'category_1', 'category_2'. You can
## override using the `.groups` argument.
## # A tibble: 13 × 5
## `Prime category` `Secondary category` `Frame Material` sales Sales
## <chr> <chr> <chr> <dbl> <chr>
## 1 Mountain Cross Country Race Aluminum 3318560 $3,318,560
## 2 Mountain Cross Country Race Carbon 15906070 $15,906,070
## 3 Mountain Fat Bike Aluminum 1052620 $1,052,620
## 4 Mountain Over Mountain Carbon 7571270 $7,571,270
## 5 Mountain Sport Aluminum 1932755 $1,932,755
## 6 Mountain Trail Aluminum 4537610 $4,537,610
## 7 Mountain Trail Carbon 4835850 $4,835,850
## 8 Road Cyclocross Carbon 2108120 $2,108,120
## 9 Road Elite Road Aluminum 5637795 $5,637,795
## 10 Road Elite Road Carbon 9696870 $9,696,870
## 11 Road Endurance Road Aluminum 1612450 $1,612,450
## 12 Road Endurance Road Carbon 8768610 $8,768,610
## 13 Road Triathalon Carbon 4053750 $4,053,750