TAS Descriptive statistics

We will be going through

Step 1: Loading Packages

library(tidyverse)
library(readxl)
library(ggplot2)
library (reshape2)
library(writexl)
library(lme4)

Step 2: Import the data

TAS_data_long_format_age <- read_excel("TAS_data_long_format_age.xlsx")

Step 3: Preview the data

view(TAS_data_long_format_age)
head(TAS_data_long_format_age)
## # A tibble: 6 × 42
##     TAS TAS05 TAS09 TAS15 `1968 Interview Number` `Person Number` Gender
##   <dbl> <dbl> <dbl> <dbl>                   <dbl>           <dbl>  <dbl>
## 1     2     1     1    NA                       4             180      2
## 2     2     1     1    NA                       5              32      2
## 3     2     1     1    NA                       6              34      1
## 4     2     1     1    NA                      14              30      1
## 5     1     1    NA    NA                      18              38      2
## 6     2     1     1    NA                      47              34      2
## # ℹ 35 more variables: `Individual is sample` <dbl>, `Year ID Number` <dbl>,
## #   `Sequence Number` <dbl>, `Relationship to Head` <dbl>,
## #   `Release Number` <dbl>, B5A <dbl>, B5D <dbl>, B6C <dbl>, C2D <dbl>,
## #   C2E <dbl>, C2F <dbl>, D2D3_month <dbl>, D2D3_year <dbl>,
## #   E1_1st_mention <dbl>, E1_2nd_mention <dbl>, E1_3rd_mention <dbl>, E3 <dbl>,
## #   G1 <dbl>, G2_month <dbl>, G2_year <dbl>, G10 <dbl>, G11 <dbl>, G30A <dbl>,
## #   G41A <dbl>, G41B <dbl>, G41C <dbl>, G41H <dbl>, G41P <dbl>, H1 <dbl>, …

2005 & 2015

Step 4: Regression (2005 & 2015)

Filter the data (2005 & 2015)

Long_format_2005_2015 <-  TAS_data_long_format_age %>% filter(year==2005| year==2015) %>% filter(Age_18_graduate< 50) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
knitr::kable(head(Long_format_2005_2015[, 1:43]))
TAS TAS05 TAS09 TAS15 1968 Interview Number Person Number Gender Individual is sample Year ID Number Sequence Number Relationship to Head Release Number B5A B5D B6C C2D C2E C2F D2D3_month D2D3_year E1_1st_mention E1_2nd_mention E1_3rd_mention E3 G1 G2_month G2_year G10 G11 G30A G41A G41B G41C G41H G41P H1 L7_1st_mention L7_2nd_mention L7_3rd_mention Age_17_graduate Age_18_graduate year year_new
2 1 1 NA 5 32 2 2 624 3 30 5 5 5 5 7 7 7 0 0 1 7 0 0 1 5 2002 1 1 7 7 6 6 7 5 2 1 0 0 20 21 2005 -1
2 1 1 NA 6 34 1 2 1202 51 30 5 2 2 6 1 1 1 0 0 7 0 0 5 1 5 2002 1 1 0 7 5 7 5 3 1 1 0 0 20 21 2005 -1
2 1 1 NA 14 30 1 2 736 51 30 5 4 4 4 2 1 1 0 0 2 0 0 0 1 6 2003 1 5 6 5 6 6 5 5 2 1 0 0 19 20 2005 -1
1 1 NA NA 18 38 2 2 5647 3 98 5 3 4 3 4 2 2 0 0 3 7 0 5 1 6 2004 1 5 6 5 5 5 7 5 2 1 0 0 18 19 2005 -1
2 1 1 NA 47 34 2 2 2516 3 30 5 4 5 6 4 5 2 0 0 1 0 0 0 1 5 2005 5 0 6 3 6 4 7 4 1 1 0 0 17 18 2005 -1
2 1 1 NA 53 35 2 2 1392 3 33 5 4 5 5 3 1 1 0 0 1 0 0 0 1 6 2002 1 1 7 6 7 7 7 5 1 1 0 0 20 21 2005 -1

B5A: Responbility for self

B5A_Regression_05_15 <- lm(B5A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
B5A_Regression_05_15
## 
## Call:
## lm(formula = B5A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  0.15546                   0.17709                   0.49385  
## Age_18_graduate:year_new  
##                 -0.02312
summary(B5A_Regression_05_15)
## 
## Call:
## lm(formula = B5A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8066 -0.6659  0.3341  0.7345  4.1172 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.15546    0.44715   0.348    0.728    
## Age_18_graduate           0.17709    0.02280   7.768 1.62e-14 ***
## year_new                  0.49385    0.44715   1.104    0.270    
## Age_18_graduate:year_new -0.02312    0.02280  -1.014    0.311    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.108 on 1296 degrees of freedom
## Multiple R-squared:  0.1075, Adjusted R-squared:  0.1054 
## F-statistic: 52.01 on 3 and 1296 DF,  p-value: < 2.2e-16
Long_format_2005_2015$predicted_B5A <- predict(B5A_Regression_05_15)
Long_format_2005_2015$year_factor_B5A <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = B5A, color = year_factor_B5A)) + geom_point(aes(shape = year_factor_B5A), alpha = 0.5) + geom_line(aes(y = predicted_B5A), size = 1) +  labs(title = "Responsibility for Self (B5A) by Age and Year",x = "Age", y = "Responsibility for Self (B5A)", color = "Year", shape = "Year") + theme_minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

B5D: Managing own money

B5D_Regression_05_15 <- lm(B5D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
B5D_Regression_05_15
## 
## Call:
## lm(formula = B5D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 3.045448                  0.069444                 -0.128830  
## Age_18_graduate:year_new  
##                 0.006945
summary(B5D_Regression_05_15)
## 
## Call:
## lm(formula = B5D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.6736 -0.3617  0.4028  0.6320  0.7084 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.045448   0.360022   8.459  < 2e-16 ***
## Age_18_graduate           0.069444   0.018357   3.783 0.000162 ***
## year_new                 -0.128830   0.360022  -0.358 0.720522    
## Age_18_graduate:year_new  0.006945   0.018357   0.378 0.705238    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8921 on 1296 degrees of freedom
## Multiple R-squared:  0.03595,    Adjusted R-squared:  0.03372 
## F-statistic: 16.11 on 3 and 1296 DF,  p-value: 2.77e-10
Long_format_2005_2015$predicted_B5D <- predict(B5D_Regression_05_15)
Long_format_2005_2015$year_factor_B5D <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = B5D, color = factor(year_factor_B5D))) + geom_point(aes(shape = year_factor_B5D), alpha = 0.5) + geom_line(aes(y = predicted_B5D), size = 1) +  labs(title = "Responsibility for Others (B5D) by Age and Year", x = "Age",y = "Managing own money (B5D)", color = "Year", shape = "Year") + theme_minimal()

B6C: Money management skills

B6C_Regression_05_15 <- lm(B6C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
B6C_Regression_05_15
## 
## Call:
## lm(formula = B6C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  6.31388                  -0.05142                  -0.98854  
## Age_18_graduate:year_new  
##                  0.05295
summary(B6C_Regression_05_15)
## 
## Call:
## lm(formula = B6C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4236 -0.4236 -0.2149  0.7851  1.9939 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               6.31388    0.54701  11.543   <2e-16 ***
## Age_18_graduate          -0.05142    0.02789  -1.844   0.0654 .  
## year_new                 -0.98854    0.54701  -1.807   0.0710 .  
## Age_18_graduate:year_new  0.05295    0.02789   1.899   0.0578 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.355 on 1296 degrees of freedom
## Multiple R-squared:  0.003719,   Adjusted R-squared:  0.001413 
## F-statistic: 1.613 on 3 and 1296 DF,  p-value: 0.1846
Long_format_2005_2015$predicted_B6C <- predict(B6C_Regression_05_15)
Long_format_2005_2015$year_factor_B6C <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = B6C, color = factor(year_factor_B6C))) + geom_point(aes(shape = year_factor_B6C), alpha = 0.5) + geom_line(aes(y = predicted_B6C), size = 1) +  labs(title = "Money management skills (B6C) by Age and Year", x = "Age",y = "Money Management skills (B6C)", color = "Year", shape = "Year") + theme_minimal()

C2D: Worry about expenses

C2D_Regression_05_15 <- lm(C2D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
C2D_Regression_05_15
## 
## Call:
## lm(formula = C2D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 3.570786                  0.002447                  0.115152  
## Age_18_graduate:year_new  
##                -0.008905
summary(C2D_Regression_05_15)
## 
## Call:
## lm(formula = C2D ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6940 -1.5632 -0.5116  1.4303  3.4820 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.570786   0.743479   4.803 1.75e-06 ***
## Age_18_graduate           0.002447   0.037909   0.065    0.949    
## year_new                  0.115152   0.743479   0.155    0.877    
## Age_18_graduate:year_new -0.008905   0.037909  -0.235    0.814    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.842 on 1296 degrees of freedom
## Multiple R-squared:  0.001239,   Adjusted R-squared:  -0.001073 
## F-statistic: 0.536 on 3 and 1296 DF,  p-value: 0.6577
Long_format_2005_2015$predicted_C2D <- predict(C2D_Regression_05_15)
Long_format_2005_2015$year_factor_C2D <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = C2D, color = factor(year_factor_C2D))) + geom_point(aes(shape = year_factor_C2D), alpha = 0.5) + geom_line(aes(y = predicted_C2D), size = 1) +  labs(title = "Worry about expenses (C2D) by Age and Year", x = "Age",y = "Worry about expenses (C2D)", color = "Year", shape = "Year") + theme_minimal()

C2E: Worry about future job

C2E_Regression_05_15 <- lm(C2E ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
C2E_Regression_05_15
## 
## Call:
## lm(formula = C2E ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  4.25107                  -0.03511                   0.63715  
## Age_18_graduate:year_new  
##                 -0.03063
summary(C2E_Regression_05_15)
## 
## Call:
## lm(formula = C2E ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7051 -1.5333 -0.4421  1.4757  3.8208 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.25107    0.77492   5.486 4.94e-08 ***
## Age_18_graduate          -0.03511    0.03951  -0.889    0.374    
## year_new                  0.63715    0.77492   0.822    0.411    
## Age_18_graduate:year_new -0.03063    0.03951  -0.775    0.438    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.92 on 1296 degrees of freedom
## Multiple R-squared:  0.004197,   Adjusted R-squared:  0.001892 
## F-statistic: 1.821 on 3 and 1296 DF,  p-value: 0.1415
Long_format_2005_2015$predicted_C2E <- predict(C2E_Regression_05_15)
Long_format_2005_2015$year_factor_C2E <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = C2E, color = factor(year_factor_C2E))) + geom_point(aes(shape = year_factor_C2E), alpha = 0.5) + geom_line(aes(y = predicted_C2E), size = 1) +  labs(title = "Worry about future job (C2E) by Age and Year", x = "Age",y = "Worry about future job (C2E)", color = "Year", shape = "Year") + theme_minimal()

C2F: Discouraged about future

C2F_Regression_05_15 <- lm(C2F ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
C2F_Regression_05_15
## 
## Call:
## lm(formula = C2F ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 3.178093                 -0.007862                  0.235240  
## Age_18_graduate:year_new  
##                -0.009527
summary(C2F_Regression_05_15)
## 
## Call:
## lm(formula = C2F ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1003 -1.0829 -0.0829  1.0255  4.0272 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.178093   0.699068   4.546 5.97e-06 ***
## Age_18_graduate          -0.007862   0.035644  -0.221    0.825    
## year_new                  0.235240   0.699068   0.337    0.737    
## Age_18_graduate:year_new -0.009527   0.035644  -0.267    0.789    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.732 on 1296 degrees of freedom
## Multiple R-squared:  0.0007165,  Adjusted R-squared:  -0.001597 
## F-statistic: 0.3098 on 3 and 1296 DF,  p-value: 0.8183
Long_format_2005_2015$predicted_C2F <- predict(C2F_Regression_05_15)
Long_format_2005_2015$year_factor_C2F <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = C2F, color = factor(year_factor_C2F))) + geom_point(aes(shape = year_factor_C2F), alpha = 0.5) + geom_line(aes(y = predicted_C2F), size = 1) +  labs(title = "Discouraged about future (C2F) by Age and Year", x = "Age",y = "Discouraged about future (C2F)", color = "Year", shape = "Year") + theme_minimal()

E3 Regression: Work for money

E3_Regression_05_15 <- lm(E3 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
E3_Regression_05_15
## 
## Call:
## lm(formula = E3 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  5.52955                  -0.19787                  -0.27701  
## Age_18_graduate:year_new  
##                  0.01148
summary(E3_Regression_05_15)
## 
## Call:
## lm(formula = E3 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.038 -1.711 -1.038  2.962  6.962 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.52955    0.88351   6.259 5.27e-10 ***
## Age_18_graduate          -0.19787    0.04505  -4.392 1.21e-05 ***
## year_new                 -0.27701    0.88351  -0.314    0.754    
## Age_18_graduate:year_new  0.01148    0.04505   0.255    0.799    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.189 on 1296 degrees of freedom
## Multiple R-squared:  0.0415, Adjusted R-squared:  0.03928 
## F-statistic: 18.71 on 3 and 1296 DF,  p-value: 7.011e-12
Long_format_2005_2015$predicted_E3 <- predict(E3_Regression_05_15)
Long_format_2005_2015$year_factor_E3 <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = E3, color = factor(year_factor_E3))) + geom_point(aes(shape = year_factor_E3), alpha = 0.5) + geom_line(aes(y = predicted_E3), size = 1) +  labs(title = "Work for money (E3) by Age and Year", x = "Age",y = "Work for money (E3)", color = "Year", shape = "Year") + theme_minimal()

G10: Attended College

G10_Regression_05_15 <- lm(G10 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G10_Regression_05_15
## 
## Call:
## lm(formula = G10 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                   6.0227                   -0.2096                   -0.3622  
## Age_18_graduate:year_new  
##                   0.0247
summary(G10_Regression_05_15)
## 
## Call:
## lm(formula = G10 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1469 -1.1469 -0.6983 -0.4071  7.0673 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               6.02272    0.67882   8.872  < 2e-16 ***
## Age_18_graduate          -0.20963    0.03461  -6.057 1.82e-09 ***
## year_new                 -0.36221    0.67882  -0.534    0.594    
## Age_18_graduate:year_new  0.02470    0.03461   0.714    0.476    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.682 on 1296 degrees of freedom
## Multiple R-squared:  0.05172,    Adjusted R-squared:  0.04952 
## F-statistic: 23.56 on 3 and 1296 DF,  p-value: 7.525e-15
Long_format_2005_2015$predicted_G10 <- predict(G10_Regression_05_15)
Long_format_2005_2015$year_factor_G10 <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = G10, color = factor(year_factor_G10))) + geom_point(aes(shape = year_factor_G10), alpha = 0.5) + geom_line(aes(y = predicted_G10), size = 1) +  labs(title = "Attended college (G10) by Age and Year", x = "Age",y = "Attended college (G10)", color = "Year", shape = "Year") + theme_minimal()

G11: Attending college

G11_Regression_05_15 <- lm(G11 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G11_Regression_05_15
## 
## Call:
## lm(formula = G11 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 -5.07994                   0.34009                  -0.74350  
## Age_18_graduate:year_new  
##                  0.04566
summary(G11_Regression_05_15)
## 
## Call:
## lm(formula = G11 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3631 -1.1200 -0.5057  1.1798  4.0366 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              -5.07994    0.70973  -7.158 1.37e-12 ***
## Age_18_graduate           0.34009    0.03619   9.398  < 2e-16 ***
## year_new                 -0.74350    0.70973  -1.048    0.295    
## Age_18_graduate:year_new  0.04566    0.03619   1.262    0.207    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.759 on 1296 degrees of freedom
## Multiple R-squared:  0.2172, Adjusted R-squared:  0.2154 
## F-statistic: 119.9 on 3 and 1296 DF,  p-value: < 2.2e-16
Long_format_2005_2015$predicted_G11 <- predict(G11_Regression_05_15)
Long_format_2005_2015$year_factor_G11 <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = G11, color = factor(year_factor_G11))) + geom_point(aes(shape = year_factor_G11), alpha = 0.5) + geom_line(aes(y = predicted_G11), size = 1) +  labs(title = "Attending college (G11) by Age and Year", x = "Age",y = "Attending college (G11)", color = "Year", shape = "Year") + theme_minimal()

G30A: Likelihood of well-paying job

G30A_Regression_05_15 <- lm(G30A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G30A_Regression_05_15
## 
## Call:
## lm(formula = G30A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 5.908619                 -0.007911                  0.258439  
## Age_18_graduate:year_new  
##                 0.003302
summary(G30A_Regression_05_15)
## 
## Call:
## lm(formula = G30A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.4484 -0.4371  0.5516  0.9343  1.6077 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.908619   0.634683   9.310   <2e-16 ***
## Age_18_graduate          -0.007911   0.032361  -0.244    0.807    
## year_new                  0.258439   0.634683   0.407    0.684    
## Age_18_graduate:year_new  0.003302   0.032361   0.102    0.919    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.573 on 1296 degrees of freedom
## Multiple R-squared:  0.03903,    Adjusted R-squared:  0.0368 
## F-statistic: 17.54 on 3 and 1296 DF,  p-value: 3.627e-11
Long_format_2005_2015$predicted_G30A <- predict(G30A_Regression_05_15)
Long_format_2005_2015$year_factor_G30A <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = G30A, color = factor(year_factor_G30A))) + geom_point(aes(shape = year_factor_G30A), alpha = 0.5) + geom_line(aes(y = predicted_G30A), size = 1) +  labs(title = "Likelihood of well-paying job (G30A) by Age and Year", x = "Age",y = "Likelihood of well-paying job (G30A)", color = "Year", shape = "Year") + theme_minimal()

G41A: Importance of job status

G41A_Regression_05_15 <- lm(G41A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41A_Regression_05_15
## 
## Call:
## lm(formula = G41A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  5.58414                  -0.02707                  -0.50731  
## Age_18_graduate:year_new  
##                  0.01674
summary(G41A_Regression_05_15)
## 
## Call:
## lm(formula = G41A ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3030 -0.8806  0.1504  1.1736  4.1504 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.58414    0.68628   8.137 9.43e-16 ***
## Age_18_graduate          -0.02707    0.03499  -0.773    0.439    
## year_new                 -0.50731    0.68628  -0.739    0.460    
## Age_18_graduate:year_new  0.01674    0.03499   0.478    0.632    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.701 on 1296 degrees of freedom
## Multiple R-squared:  0.01348,    Adjusted R-squared:  0.01119 
## F-statistic: 5.902 on 3 and 1296 DF,  p-value: 0.0005338
Long_format_2005_2015$predicted_G41A <- predict(G41A_Regression_05_15)
Long_format_2005_2015$year_factor_G41A <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = G41A, color = factor(year_factor_G41A))) + geom_point(aes(shape = year_factor_G41A), alpha = 0.5) + geom_line(aes(y = predicted_G41A), size = 1) +  labs(title = "Importance of job status (G41A) by Age and Year", x = "Age",y = "Importance of job status (G41A)", color = "Year", shape = "Year") + theme_minimal()

G41B: Importance of decision-making

G41B_Regression_05_15 <- lm(G41B ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41B_Regression_05_15
## 
## Call:
## lm(formula = G41B ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 5.119286                  0.028469                  0.021745  
## Age_18_graduate:year_new  
##                -0.005185
summary(G41B_Regression_05_15)
## 
## Call:
## lm(formula = G41B ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.7697 -0.7033  0.2630  1.2294  3.3467 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.119286   0.493473  10.374   <2e-16 ***
## Age_18_graduate           0.028469   0.025161   1.131    0.258    
## year_new                  0.021745   0.493473   0.044    0.965    
## Age_18_graduate:year_new -0.005185   0.025161  -0.206    0.837    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.223 on 1296 degrees of freedom
## Multiple R-squared:  0.003559,   Adjusted R-squared:  0.001252 
## F-statistic: 1.543 on 3 and 1296 DF,  p-value: 0.2017
Long_format_2005_2015$predicted_G41A <- predict(G41A_Regression_05_15)
Long_format_2005_2015$year_factor_G41A <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = G41A, color = factor(year_factor_G41A))) + geom_point(aes(shape = year_factor_G41A), alpha = 0.5) + geom_line(aes(y = predicted_G41A), size = 1) +  labs(title = "Importance of decision-making (G41A) by Age and Year", x = "Age",y = "Importance of decision-making (G41A)", color = "Year", shape = "Year") + theme_minimal()

G41C: Importance of challenging work

G41C_Regression_05_15 <- lm(G41C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41C_Regression_05_15
## 
## Call:
## lm(formula = G41C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                   9.7681                   -0.2160                    4.7219  
## Age_18_graduate:year_new  
##                  -0.2397
summary(G41C_Regression_05_15)
## 
## Call:
## lm(formula = G41C ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.8326 -0.8326  0.4456  1.1674  7.0908 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               9.76805    0.65631  14.883  < 2e-16 ***
## Age_18_graduate          -0.21599    0.03346  -6.454 1.53e-10 ***
## year_new                  4.72185    0.65631   7.195 1.06e-12 ***
## Age_18_graduate:year_new -0.23966    0.03346  -7.162 1.33e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.626 on 1296 degrees of freedom
## Multiple R-squared:  0.2466, Adjusted R-squared:  0.2448 
## F-statistic: 141.4 on 3 and 1296 DF,  p-value: < 2.2e-16
Long_format_2005_2015$predicted_G41C <- predict(G41C_Regression_05_15)
Long_format_2005_2015$year_factor_G41C <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = G41C, color = factor(year_factor_G41C))) + geom_point(aes(shape = year_factor_G41C), alpha = 0.5) + geom_line(aes(y = predicted_G41C), size = 1) +  labs(title = "Importance of challenging work (G41C) by Age and Year", x = "Age",y = "Importance of challenging work (G41C)", color = "Year", shape = "Year") + theme_minimal()

G41H: Importance of healthcare benefits

G41H_Regression_05_15 <- lm(G41H ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41H_Regression_05_15
## 
## Call:
## lm(formula = G41H ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 6.372599                 -0.003932                  0.007573  
## Age_18_graduate:year_new  
##                -0.002837
summary(G41H_Regression_05_15)
## 
## Call:
## lm(formula = G41H ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3453 -0.3442  0.6547  0.7484  2.7687 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               6.372599   0.425545  14.975   <2e-16 ***
## Age_18_graduate          -0.003932   0.021698  -0.181    0.856    
## year_new                  0.007573   0.425545   0.018    0.986    
## Age_18_graduate:year_new -0.002837   0.021698  -0.131    0.896    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.054 on 1296 degrees of freedom
## Multiple R-squared:  0.002776,   Adjusted R-squared:  0.0004676 
## F-statistic: 1.203 on 3 and 1296 DF,  p-value: 0.3075
Long_format_2005_2015$predicted_G41H <- predict(G41H_Regression_05_15)
Long_format_2005_2015$year_factor_G41H <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = G41H, color = factor(year_factor_G41H))) + geom_point(aes(shape = year_factor_G41H), alpha = 0.5) + geom_line(aes(y = predicted_G41H), size = 1) +  labs(title = "Importance of healthcare benefits (G41H) by Age and Year", x = "Age",y = "Importance of healthcare benefits (G41H)", color = "Year", shape = "Year") + theme_minimal()

G41P: Importance of job central to identity

G41P_Regression_05_15 <- lm(G41P ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
G41P_Regression_05_15
## 
## Call:
## lm(formula = G41P ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                 4.564503                  0.019148                 -0.123732  
## Age_18_graduate:year_new  
##                 0.002194
summary(G41P_Regression_05_15)
## 
## Call:
## lm(formula = G41P ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0443 -0.9934  0.0684  1.0897  4.0897 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.564503   0.640747   7.124 1.74e-12 ***
## Age_18_graduate           0.019148   0.032670   0.586    0.558    
## year_new                 -0.123732   0.640747  -0.193    0.847    
## Age_18_graduate:year_new  0.002194   0.032670   0.067    0.946    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.588 on 1296 degrees of freedom
## Multiple R-squared:  0.002054,   Adjusted R-squared:  -0.0002561 
## F-statistic: 0.8891 on 3 and 1296 DF,  p-value: 0.4461
Long_format_2005_2015$predicted_G41P <- predict(G41P_Regression_05_15)
Long_format_2005_2015$year_factor_G41P <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = G41P, color = factor(year_factor_G41P))) + geom_point(aes(shape = year_factor_G41P), alpha = 0.5) + geom_line(aes(y = predicted_G41P), size = 1) +  labs(title = "Importance of job central to identity (G41P) by Age and Year", x = "Age",y = "Importance of job central to identity (G41P)", color = "Year", shape = "Year") + theme_minimal()

H1: General Health

H1_Regression_05_15 <- lm(H1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, data = Long_format_2005_2015)
H1_Regression_05_15
## 
## Call:
## lm(formula = H1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Coefficients:
##              (Intercept)           Age_18_graduate                  year_new  
##                  1.95956                   0.01105                  -0.17487  
## Age_18_graduate:year_new  
##                  0.01162
summary(H1_Regression_05_15)
## 
## Call:
## lm(formula = H1 ~ Age_18_graduate + year_new + Age_18_graduate:year_new, 
##     data = Long_format_2005_2015)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.5101 -0.3741 -0.1243  0.7676  6.7166 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.95956    0.37858   5.176 2.62e-07 ***
## Age_18_graduate           0.01105    0.01930   0.573    0.567    
## year_new                 -0.17487    0.37858  -0.462    0.644    
## Age_18_graduate:year_new  0.01162    0.01930   0.602    0.547    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9381 on 1296 degrees of freedom
## Multiple R-squared:  0.008008,   Adjusted R-squared:  0.005712 
## F-statistic: 3.487 on 3 and 1296 DF,  p-value: 0.01528
Long_format_2005_2015$predicted_H1 <- predict(H1_Regression_05_15)
Long_format_2005_2015$year_factor_H1 <- factor(Long_format_2005_2015$year)
ggplot(Long_format_2005_2015, aes(x = Age_18_graduate, y = H1, color = factor(year_factor_H1))) + geom_point(aes(shape = year_factor_H1), alpha = 0.5) + geom_line(aes(y = predicted_H1), size = 1) +  labs(title = "General Health (H1) by Age and Year", x = "Age",y = "General Health (H1)", color = "Year", shape = "Year") + theme_minimal()



2005 & 2009

Step 5: Regression (2005 & 2009)

Filter the data (2005 & 2009)

Long_format_2005_2009 <-  TAS_data_long_format_age %>% filter(TAS05 == 1 & TAS09 ==1) %>% filter(Age_18_graduate< 50) %>% unite("TAS_ID", c("1968 Interview Number", "Person Number")) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
knitr::kable(head(Long_format_2005_2009[, 1:42]))
TAS TAS05 TAS09 TAS15 TAS_ID Gender Individual is sample Year ID Number Sequence Number Relationship to Head Release Number B5A B5D B6C C2D C2E C2F D2D3_month D2D3_year E1_1st_mention E1_2nd_mention E1_3rd_mention E3 G1 G2_month G2_year G10 G11 G30A G41A G41B G41C G41H G41P H1 L7_1st_mention L7_2nd_mention L7_3rd_mention Age_17_graduate Age_18_graduate year year_new
2 1 1 NA 5_32 2 2 624 3 30 5 5 5 5 7 7 7 0 0 1 7 0 0 1 5 2002 1 1 7 7 6 6 7 5 2 1 0 0 20 21 2005 -1
2 1 1 NA 6_34 1 2 1202 51 30 5 2 2 6 1 1 1 0 0 7 0 0 5 1 5 2002 1 1 0 7 5 7 5 3 1 1 0 0 20 21 2005 -1
2 1 1 NA 14_30 1 2 736 51 30 5 4 4 4 2 1 1 0 0 2 0 0 0 1 6 2003 1 5 6 5 6 6 5 5 2 1 0 0 19 20 2005 -1
2 1 1 NA 47_34 2 2 2516 3 30 5 4 5 6 4 5 2 0 0 1 0 0 0 1 5 2005 5 0 6 3 6 4 7 4 1 1 0 0 17 18 2005 -1
2 1 1 NA 53_35 2 2 1392 3 33 5 4 5 5 3 1 1 0 0 1 0 0 0 1 6 2002 1 1 7 6 7 7 7 5 1 1 0 0 20 21 2005 -1
2 1 1 NA 53_36 2 2 1616 3 30 5 4 5 7 4 1 1 0 0 6 0 0 1 1 6 2005 1 5 7 7 7 5 7 6 2 1 0 0 17 18 2005 -1

B5A: Responsibility for self

B5A_Regression_05_09 <- coef(summary(lmer(B5A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
B5A_Regression_05_09
##                            Estimate Std. Error   t value
## (Intercept)               1.7049437  0.9504058  1.793911
## Age_18_graduate           0.1126495  0.0408727  2.756105
## year_new                  2.3317636  1.0986019  2.122483
## Age_18_graduate:year_new -0.1010051  0.0515928 -1.957736

B5D: Managing own money

B5D_Regression_05_09 <- coef(summary(lmer(B5D ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
B5D_Regression_05_09
##                              Estimate Std. Error    t value
## (Intercept)               4.505982339 0.71030845  6.3436980
## Age_18_graduate           0.009647563 0.03054743  0.3158225
## year_new                  1.274845187 0.88038463  1.4480548
## Age_18_graduate:year_new -0.049783106 0.04138611 -1.2028941

B6C: Money management skills

B6C_Regression_05_09 <- coef(summary(lmer(B6C ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
B6C_Regression_05_09
##                             Estimate Std. Error    t value
## (Intercept)               5.66943070 1.18544897  4.7825177
## Age_18_graduate          -0.01261529 0.05097942 -0.2474585
## year_new                 -1.42473025 1.17359923 -1.2139836
## Age_18_graduate:year_new  0.08128567 0.05494172  1.4794890

C2D: Worry about expenses

C2D_Regression_05_09 <- coef(summary(lmer(C2D ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
C2D_Regression_05_09
##                            Estimate Std. Error   t value
## (Intercept)               7.3808857 1.64577392  4.484751
## Age_18_graduate          -0.1487023 0.07077708 -2.100995
## year_new                  4.0749749 1.85011017  2.202558
## Age_18_graduate:year_new -0.1667451 0.08684468 -1.920038

C2E: Worry about future job

C2E_Regression_05_09 <- coef(summary(lmer(C2E ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
C2E_Regression_05_09
##                            Estimate Std. Error   t value
## (Intercept)               7.0530144 1.68229219  4.192503
## Age_18_graduate          -0.1438851 0.07234711 -1.988815
## year_new                  3.3268969 1.82167329  1.826286
## Age_18_graduate:year_new -0.1319676 0.08545059 -1.544373

C2F: Discouraged about future

C2F_Regression_05_09 <- coef(summary(lmer(C2F ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
C2F_Regression_05_09
##                            Estimate Std. Error   t value
## (Intercept)               6.1188117 1.50217000  4.073315
## Age_18_graduate          -0.1258293 0.06460078 -1.947799
## year_new                  3.5870015 1.60324775  2.237334
## Age_18_graduate:year_new -0.1495906 0.07518302 -1.989686

E3: Work for money

E3_Regression_05_09 <- coef(summary(lmer(E3 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
E3_Regression_05_09
##                             Estimate Std. Error    t value
## (Intercept)               4.39454794 1.94710064  2.2569701
## Age_18_graduate          -0.13947927 0.08373681 -1.6656865
## year_new                 -1.37494309 2.43826456 -0.5639023
## Age_18_graduate:year_new  0.06563105 0.11463524  0.5725208

G10: Attended college

G10_Regression_05_09 <- coef(summary(lmer(G10 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
G10_Regression_05_09
##                             Estimate Std. Error   t value
## (Intercept)               3.87117081 1.38495464  2.795161
## Age_18_graduate          -0.09283685 0.05955689 -1.558793
## year_new                 -3.33951941 1.19289126 -2.799517
## Age_18_graduate:year_new  0.18346199 0.05561477  3.298800

G11: Attending college

G11_Regression_05_09 <- coef(summary(lmer(G11 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
G11_Regression_05_09
##                             Estimate Std. Error    t value
## (Intercept)              -2.58439662 1.65548953 -1.5611072
## Age_18_graduate           0.23584693 0.07119582  3.3126515
## year_new                  2.47459896 2.07684845  1.1915164
## Age_18_graduate:year_new -0.09394457 0.09764536 -0.9620997

G30A: Likelihood of well-paying job

G30A_Regression_05_09 <- coef(summary(lmer(G30A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
G30A_Regression_05_09
##                             Estimate Std. Error    t value
## (Intercept)               5.71825037 1.45407293  3.9325747
## Age_18_graduate           0.00812878 0.06253379  0.1299902
## year_new                 -0.34353683 1.86209960 -0.1844890
## Age_18_graduate:year_new  0.04118634 0.08756947  0.4703276

G41A: Importance of job status

G41A_Regression_05_09 <- coef(summary(lmer(G41A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
G41A_Regression_05_09
##                            Estimate Std. Error   t value
## (Intercept)               7.8986891 1.52885014  5.166425
## Age_18_graduate          -0.1408573 0.06574693 -2.142417
## year_new                  2.3370043 1.49157273  1.566805
## Age_18_graduate:year_new -0.1241290 0.06980167 -1.778310

G41B: Importance of decision-making

G41B_Regression_05_09 <- coef(summary(lmer(G41B ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
G41B_Regression_05_09
##                             Estimate Std. Error   t value
## (Intercept)               6.80031590 1.02986629  6.603106
## Age_18_graduate          -0.05036615 0.04428979 -1.137196
## year_new                  1.99032948 1.16229166  1.712418
## Age_18_graduate:year_new -0.09823104 0.05456202 -1.800355

G41C: Importance of challending work

G41C_Regression_05_09 <- coef(summary(lmer(G41C ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
G41C_Regression_05_09
##                             Estimate Std. Error    t value
## (Intercept)               5.82545975 1.02975422  5.6571361
## Age_18_graduate          -0.01049655 0.04428473 -0.2370241
## year_new                  1.51721683 1.12459077  1.3491279
## Age_18_graduate:year_new -0.07307065 0.05276067 -1.3849453

G41H: Importance of healthcare benefits

G41H_Regression_05_09 <- coef(summary(lmer(G41H ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
G41H_Regression_05_09
##                             Estimate Std. Error    t value
## (Intercept)               7.12844553 0.94360861  7.5544515
## Age_18_graduate          -0.03713494 0.04058027 -0.9150984
## year_new                  1.23105564 1.06878854  1.1518234
## Age_18_graduate:year_new -0.06055932 0.05017577 -1.2069435

G41P: Importance of job central to identity

G41P_Regression_05_09 <- coef(summary(lmer(G41P ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
G41P_Regression_05_09
##                            Estimate Std. Error   t value
## (Intercept)               8.4518726 1.46542740  5.767514
## Age_18_graduate          -0.1740935 0.06302088 -2.762474
## year_new                  3.7624438 1.59441924  2.359758
## Age_18_graduate:year_new -0.1916155 0.07479753 -2.561789

H1: General Health

H1_Regression_05_09 <- coef(summary(lmer(H1 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2005_2009)))
H1_Regression_05_09
##                              Estimate Std. Error    t value
## (Intercept)               1.971501515 0.78278878  2.5185613
## Age_18_graduate           0.009647212 0.03366364  0.2865766
## year_new                 -0.316060912 0.81412977 -0.3882193
## Age_18_graduate:year_new  0.017558568 0.03815714  0.4601647

2009 & 2015

Step 6: Regression (2009 & 2015)

Filter the data (2009 & 2015)

Long_format_2009_2015 <-  TAS_data_long_format_age %>% filter(TAS09 == 1 & TAS15 ==1) %>% filter(Age_18_graduate< 50) %>% unite("TAS_ID", c("1968 Interview Number", "Person Number")) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
knitr::kable(head(Long_format_2009_2015[, 1:42]))
TAS TAS05 TAS09 TAS15 TAS_ID Gender Individual is sample Year ID Number Sequence Number Relationship to Head Release Number B5A B5D B6C C2D C2E C2F D2D3_month D2D3_year E1_1st_mention E1_2nd_mention E1_3rd_mention E3 G1 G2_month G2_year G10 G11 G30A G41A G41B G41C G41H G41P H1 L7_1st_mention L7_2nd_mention L7_3rd_mention Age_17_graduate Age_18_graduate year year_new
2 NA 1 1 4_39 2 2 13 3 60 3 4 5 4 6 7 5 0 0 1 0 0 0 1 5 2008 1 5 5 6 5 2 7 6 2 1 0 0 18 19 2009 0
2 NA 1 1 7_40 2 2 3836 2 22 3 2 2 7 7 3 4 0 0 6 0 0 5 1 6 2007 5 0 5 5 2 5 6 5 3 1 0 0 19 20 2009 0
2 NA 1 1 7_41 1 2 576 2 30 3 3 4 7 4 5 4 0 0 3 0 0 5 1 5 2009 5 0 7 5 6 5 7 5 2 1 0 0 17 18 2009 0
2 NA 1 1 10_34 2 2 3276 3 30 3 4 5 6 4 1 1 0 0 1 0 0 0 1 6 2008 1 5 7 7 5 4 7 5 2 2 0 0 18 19 2009 0
2 NA 1 1 14_31 2 2 713 1 10 3 5 5 7 4 4 4 0 0 1 0 0 0 1 6 2005 5 0 6 5 7 6 7 2 4 1 0 0 21 22 2009 0
2 NA 1 1 22_30 2 2 907 2 30 3 5 1 4 3 1 1 0 0 1 0 0 0 1 5 2006 1 1 7 6 6 6 6 6 1 2 0 0 20 21 2009 0

B5A: Responsibility for self

B5A_Regression_09_15 <- coef(summary(lmer(B5A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
B5A_Regression_09_15
##                             Estimate Std. Error     t value
## (Intercept)              -0.06784334 0.90650139 -0.07484086
## Age_18_graduate           0.18195862 0.04683835  3.88482108
## year_new                  8.18855845 2.13773121  3.83049019
## Age_18_graduate:year_new -0.32077226 0.08942129 -3.58720246

B5D: Managing own money

B5D_Regression_09_15 <- coef(summary(lmer(B5D ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
B5D_Regression_09_15
##                            Estimate Std. Error   t value
## (Intercept)               2.1596035 0.71917836  3.002876
## Age_18_graduate           0.1158126 0.03715993  3.116599
## year_new                  2.6653056 1.64124639  1.623952
## Age_18_graduate:year_new -0.1169529 0.06859541 -1.704966

B6C: Money Management Skills

B6C_Regression_09_15 <- coef(summary(lmer(B6C ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
B6C_Regression_09_15
##                              Estimate Std. Error     t value
## (Intercept)               5.387665355 0.97147373  5.54586830
## Age_18_graduate           0.005874344 0.05019645  0.11702708
## year_new                 -0.023141367 2.16345717 -0.01069648
## Age_18_graduate:year_new -0.009995851 0.09038310 -0.11059425

C2D: Worry about expenses

C2D_Regression_09_15 <- coef(summary(lmer(C2D ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
C2D_Regression_09_15
##                             Estimate Std. Error    t value
## (Intercept)               4.13060635 1.49865491  2.7562091
## Age_18_graduate          -0.02107251 0.07743331 -0.2721376
## year_new                  2.39751228 3.70020892  0.6479397
## Age_18_graduate:year_new -0.10211535 0.15511410 -0.6583241

C2E: Worry about future job

C2E_Regression_09_15 <- coef(summary(lmer(C2E ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
C2E_Regression_09_15
##                             Estimate Std. Error    t value
## (Intercept)               4.39942243 1.49336061  2.9459880
## Age_18_graduate          -0.03992373 0.07716012 -0.5174140
## year_new                 -1.23602788 3.63452607 -0.3400795
## Age_18_graduate:year_new  0.03853863 0.15222947  0.2531614

C2F: Discouraged about future

C2F_Regression_09_15 <- coef(summary(lmer(C2F ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
C2F_Regression_09_15
##                              Estimate Std. Error    t value
## (Intercept)               3.233585058 1.31538304  2.4582840
## Age_18_graduate          -0.008496079 0.06796569 -0.1250054
## year_new                  3.266890918 3.01765574  1.0825923
## Age_18_graduate:year_new -0.137321119 0.12613599 -1.0886752

E3: Work for money

E3_Regression_09_15 <- coef(summary(lmer(E3 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
E3_Regression_09_15
##                            Estimate Std. Error   t value
## (Intercept)              12.1131294 1.76953564  6.845372
## Age_18_graduate          -0.5192913 0.09142913 -5.679714
## year_new                 -9.5814818 4.40210705 -2.176567
## Age_18_graduate:year_new  0.4502147 0.18464166  2.438316

G10: Attended college

G10_Regression_09_15 <- coef(summary(lmer(G10 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
G10_Regression_09_15
##                            Estimate Std. Error   t value
## (Intercept)               5.9448964 1.32392793  4.490347
## Age_18_graduate          -0.2045299 0.06841002 -2.989765
## year_new                 -4.2356131 2.58746648 -1.636973
## Age_18_graduate:year_new  0.1752695 0.10803679  1.622313

G11: Attending college

G11_Regression_09_15 <- coef(summary(lmer(G11 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
G11_Regression_09_15
##                            Estimate Std. Error   t value
## (Intercept)              -4.1480226 1.24457562 -3.332881
## Age_18_graduate           0.2785812 0.06430516  4.332175
## year_new                  6.0329273 3.11954157  1.933915
## Age_18_graduate:year_new -0.2078620 0.13093333 -1.587541

G30A: Likelihood of well-paying job

G30A_Regression_09_15 <- coef(summary(lmer(G30A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
G30A_Regression_09_15
##                             Estimate Std. Error    t value
## (Intercept)               6.27869137 0.78012521  8.0483124
## Age_18_graduate          -0.01196506 0.04030851 -0.2968369
## year_new                 -1.19472620 1.84737398 -0.6467159
## Age_18_graduate:year_new  0.05204445 0.07728628  0.6733984

G41A: Importance of job status

G41A_Regression_09_15 <- coef(summary(lmer(G41A ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
G41A_Regression_09_15
##                            Estimate Std. Error   t value
## (Intercept)              10.4620335 1.29529818  8.076931
## Age_18_graduate          -0.2749885 0.06692972 -4.108616
## year_new                 -3.1765831 2.72347032 -1.166373
## Age_18_graduate:year_new  0.1716292 0.11371924  1.509236

G41B: Importance of decision-making

G41B_Regression_09_15 <- coef(summary(lmer(G41B ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
G41B_Regression_09_15
##                              Estimate Std. Error     t value
## (Intercept)               7.381505151 0.93290003  7.91242885
## Age_18_graduate          -0.086371067 0.04820305 -1.79181748
## year_new                  0.590214017 2.11366219  0.27923763
## Age_18_graduate:year_new -0.003997973 0.08832756 -0.04526303

G41C: Importance of challenging work

G41C_Regression_09_15 <- coef(summary(lmer(G41C ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
G41C_Regression_09_15
##                             Estimate Std. Error   t value
## (Intercept)               6.29767447 1.21980546  5.162852
## Age_18_graduate          -0.03876255 0.06302525 -0.615032
## year_new                 25.15586480 3.07690464  8.175705
## Age_18_graduate:year_new -1.14267489 0.12923163 -8.842068

G41H: Importance of healthcare benefits

G41H_Regression_09_15 <- coef(summary(lmer(G41H ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
G41H_Regression_09_15
##                             Estimate Std. Error    t value
## (Intercept)               7.13997793 0.84018263  8.4981261
## Age_18_graduate          -0.04077900 0.04341277 -0.9393320
## year_new                 -1.42772553 1.84671752 -0.7731153
## Age_18_graduate:year_new  0.05882735 0.07713752  0.7626296

G41P: Importance of job central to identity

G41P_Regression_09_15 <- coef(summary(lmer(G41P ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
G41P_Regression_09_15
##                            Estimate Std. Error   t value
## (Intercept)               9.3552436 1.28054155  7.305693
## Age_18_graduate          -0.2298414 0.06616616 -3.473701
## year_new                 -4.5067094 2.84500405 -1.584078
## Age_18_graduate:year_new  0.2374688 0.11885225  1.998017

H1: General Health

H1_Regression_09_15 <- coef(summary(lmer(H1 ~ Age_18_graduate + year_new + Age_18_graduate*year_new + (1 | TAS_ID), data = Long_format_2009_2015)))
H1_Regression_09_15
##                             Estimate Std. Error    t value
## (Intercept)               0.76614503 0.69569144  1.1012713
## Age_18_graduate           0.07040371 0.03594607  1.9585926
## year_new                  1.31170836 1.62367933  0.8078617
## Age_18_graduate:year_new -0.06162274 0.06789749 -0.9075849

Gender: 2005 & 2015

Step 4: Regression (2005 & 2015)

Filter the data (2005 & 2015)

Long_format_2005_2015 <-  TAS_data_long_format_age %>% filter(year==2005| year==2015) %>% filter(Age_18_graduate< 50) %>% mutate(year_new = case_when(year == 2005 ~ -1, year == 2009 ~ 0,year == 2015 ~ 1))
knitr::kable(head(Long_format_2005_2015[, 1:43]))
TAS TAS05 TAS09 TAS15 1968 Interview Number Person Number Gender Individual is sample Year ID Number Sequence Number Relationship to Head Release Number B5A B5D B6C C2D C2E C2F D2D3_month D2D3_year E1_1st_mention E1_2nd_mention E1_3rd_mention E3 G1 G2_month G2_year G10 G11 G30A G41A G41B G41C G41H G41P H1 L7_1st_mention L7_2nd_mention L7_3rd_mention Age_17_graduate Age_18_graduate year year_new
2 1 1 NA 5 32 2 2 624 3 30 5 5 5 5 7 7 7 0 0 1 7 0 0 1 5 2002 1 1 7 7 6 6 7 5 2 1 0 0 20 21 2005 -1
2 1 1 NA 6 34 1 2 1202 51 30 5 2 2 6 1 1 1 0 0 7 0 0 5 1 5 2002 1 1 0 7 5 7 5 3 1 1 0 0 20 21 2005 -1
2 1 1 NA 14 30 1 2 736 51 30 5 4 4 4 2 1 1 0 0 2 0 0 0 1 6 2003 1 5 6 5 6 6 5 5 2 1 0 0 19 20 2005 -1
1 1 NA NA 18 38 2 2 5647 3 98 5 3 4 3 4 2 2 0 0 3 7 0 5 1 6 2004 1 5 6 5 5 5 7 5 2 1 0 0 18 19 2005 -1
2 1 1 NA 47 34 2 2 2516 3 30 5 4 5 6 4 5 2 0 0 1 0 0 0 1 5 2005 5 0 6 3 6 4 7 4 1 1 0 0 17 18 2005 -1
2 1 1 NA 53 35 2 2 1392 3 33 5 4 5 5 3 1 1 0 0 1 0 0 0 1 6 2002 1 1 7 6 7 7 7 5 1 1 0 0 20 21 2005 -1

B5A: Responsibility for self

coef(summary(lm(B5A ~ Gender + year_new, data = Long_format_2005_2015)))
##               Estimate Std. Error   t value      Pr(>|t|)
## (Intercept)  4.0315954  0.1018711 39.575457 2.803596e-225
## Gender      -0.1979421  0.0638855 -3.098388  1.987583e-03
## year_new     0.2047267  0.0320330  6.391119  2.291367e-10

B5D: Managing own money

coef(summary(lm(B5D ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error   t value     Pr(>|t|)
## (Intercept)  4.56326308 0.08011094 56.961793 0.0000000000
## Gender      -0.06503111 0.05023925 -1.294428 0.1957479412
## year_new     0.08376591 0.02519060  3.325285 0.0009079731

B6C: Money management skills

coef(summary(lm(B6C ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error    t value      Pr(>|t|)
## (Intercept)  5.38049049 0.12029882 44.7260459 4.563815e-265
## Gender      -0.03713145 0.07544191 -0.4921860  6.226712e-01
## year_new     0.03260448 0.03782753  0.8619247  3.888883e-01

C2D: Worry about expenses

coef(summary(lm(C2D ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error   t value     Pr(>|t|)
## (Intercept)  3.47868097 0.16322806 21.311782 1.194268e-86
## Gender       0.08747606 0.10236374  0.854561 3.929520e-01
## year_new    -0.06054635 0.05132647 -1.179632 2.383629e-01

C2E: Worry about future job

coef(summary(lm(C2E ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error    t value     Pr(>|t|)
## (Intercept)  3.05782814 0.17001859 17.9852572 9.625869e-65
## Gender       0.29525591 0.10662222  2.7691780 5.699871e-03
## year_new    -0.01327876 0.05346173 -0.2483788 8.038807e-01

C2F: Discouraged about future

coef(summary(lm(C2F ~ Gender + year_new, data = Long_format_2005_2015)))
##               Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 2.70300273 0.15328352 17.634007 1.489996e-62
## Gender      0.20155433 0.09612731  2.096744 3.620954e-02
## year_new    0.03962929 0.04819945  0.822194 4.111176e-01

E3: Work for money

coef(summary(lm(E3 ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error    t value     Pr(>|t|)
## (Intercept)  1.44293314 0.19689620  7.3283952 4.082580e-13
## Gender       0.04978551 0.12347773  0.4031943 6.868718e-01
## year_new    -0.25138842 0.06191329 -4.0603303 5.193669e-05

G10: Attended college

coef(summary(lm(G10 ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error   t value     Pr(>|t|)
## (Intercept)  2.20322884 0.15242429 14.454578 5.087477e-44
## Gender      -0.27530220 0.09558847 -2.880078 4.041110e-03
## year_new    -0.09047707 0.04792927 -1.887721 5.928652e-02

G11: Attending college

coef(summary(lm(G11 ~ Gender + year_new, data = Long_format_2005_2015)))
##              Estimate Std. Error    t value     Pr(>|t|)
## (Intercept) 1.8481899 0.16943878 10.9077145 1.448750e-26
## Gender      0.0232750 0.10625861  0.2190411 8.266525e-01
## year_new    0.5452727 0.05327941 10.2342115 1.077770e-23

G30A: Likelihood of well-paying job

coef(summary(lm(G30A ~ Gender + year_new, data = Long_format_2005_2015)))
##               Estimate Std. Error    t value      Pr(>|t|)
## (Intercept) 5.67676303 0.13936409 40.7333270 2.759724e-234
## Gender      0.04920755 0.08739814  0.5630274  5.735135e-01
## year_new    0.31877671 0.04382253  7.2742650  6.008737e-13

G41A: Importance of job status

coef(summary(lm(G41A ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error   t value      Pr(>|t|)
## (Intercept)  4.91622778 0.15069224 32.624293 5.831102e-171
## Gender       0.08934479 0.09450226  0.945425  3.446181e-01
## year_new    -0.19273169 0.04738463 -4.067389  5.040812e-05

G41B: Importance of decision-making

coef(summary(lm(G41B ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error   t value      Pr(>|t|)
## (Intercept)  5.55242121 0.10837947 51.231303 6.452355e-314
## Gender       0.09262916 0.06796703  1.362854  1.731650e-01
## year_new    -0.05062620 0.03407953 -1.485531  1.376462e-01

G41C: Importance of healthcare benefits

coef(summary(lm(G41C ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error    t value      Pr(>|t|)
## (Intercept)  5.05045819 0.16259746 31.0611133 8.107273e-159
## Gender       0.04782299 0.10196827  0.4689987  6.391494e-01
## year_new    -0.37811595 0.05112818 -7.3954509  2.520449e-13

G41H: Importance of healthcare benefits

coef(summary(lm(G41H ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error   t value     Pr(>|t|)
## (Intercept)  5.88255589 0.09269561 63.461000 0.000000e+00
## Gender       0.26887442 0.05813136  4.625291 4.114766e-06
## year_new    -0.04569501 0.02914780 -1.567700 1.171950e-01

G41P: Importance of job central to identity

coef(summary(lm(G41P ~ Gender + year_new, data = Long_format_2005_2015)))
##                Estimate Std. Error   t value      Pr(>|t|)
## (Intercept)  4.92899976 0.14075490 35.018318 1.170615e-189
## Gender       0.01793715 0.08827034  0.203207  8.390051e-01
## year_new    -0.05829606 0.04425987 -1.317131  1.880272e-01

H1: General Health

coef(summary(lm(H1 ~ Gender + year_new, data = Long_format_2005_2015)))
##               Estimate Std. Error   t value      Pr(>|t|)
## (Intercept) 1.96972544 0.08295675 23.744003 8.884067e-104
## Gender      0.14983206 0.05202392  2.880061  4.041321e-03
## year_new    0.07781306 0.02608545  2.983006  2.907658e-03