library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# 1. join + filter - Which airplanes fly LGA to XNA (1 POINT)

lga_to_xna_flights <- flights %>%
  filter(origin == "LGA", dest == "XNA") %>%
  inner_join(planes, by = "tailnum")
# 2. join  - Add the airline name to the flights table (1 POINT)

flights_with_airlines <- flights %>%
  inner_join(airlines, by = "carrier")
# 3. join + select + distinct() - Which airports have no commercial flights (1 POINT)

no_commercial_airports <- airports %>%
  anti_join(flights, by = c("faa" = "origin")) %>%
  anti_join(flights, by = c("faa" = "dest")) %>%
  select(name) %>%
  distinct()
# 4. EXTRA CREDIT - (2 POINT2) - NO HELP - NO PARTIAL CREDIT
# Create a table with the names of the airports with the most 
# winds (wind_speed > 30). The table must contain only the airport 
# name (airports$name) and no duplicate rows

high_wind_airports <- weather %>%
  filter(wind_speed > 30) %>%
  inner_join(airports, by = c("origin" = "faa")) %>%
  select(name) %>%
  distinct()

high_wind_airports
## # A tibble: 3 × 1
##   name               
##   <chr>              
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia