library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# 1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
lga_to_xna_flights <- flights %>%
filter(origin == "LGA", dest == "XNA") %>%
inner_join(planes, by = "tailnum")
# 2. join - Add the airline name to the flights table (1 POINT)
flights_with_airlines <- flights %>%
inner_join(airlines, by = "carrier")
# 3. join + select + distinct() - Which airports have no commercial flights (1 POINT)
no_commercial_airports <- airports %>%
anti_join(flights, by = c("faa" = "origin")) %>%
anti_join(flights, by = c("faa" = "dest")) %>%
select(name) %>%
distinct()
# 4. EXTRA CREDIT - (2 POINT2) - NO HELP - NO PARTIAL CREDIT
# Create a table with the names of the airports with the most
# winds (wind_speed > 30). The table must contain only the airport
# name (airports$name) and no duplicate rows
high_wind_airports <- weather %>%
filter(wind_speed > 30) %>%
inner_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
high_wind_airports
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia