1 READ ONLINE DATA

2 EXPLORATORY DESCRIPTION

## Descriptive Statistics:
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                            N (NA)       Mean         SD |   Median     Min          Max Skewness Kurtosis
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## firm*                   6034          791.61     445.70 |   765.00    1.00      1601.00     0.08    -1.06
## fiscal_year             6034         2019.35       2.50 |  2020.00 2014.00      2022.00    -0.79    -0.66
## carbon_emission_scope1  5959   75 2451641.45 9526167.65 | 49700.00    0.00 144000000.00     7.15    64.51
## carbon_emission_scope2  5811  223  590156.10 2464980.72 | 76900.00    0.00  64171000.00    14.88   301.77
## W*                      6034            1.72       0.45 |     2.00    1.00         2.00    -1.01    -0.99
## T                       6034            1.72       1.06 |     2.00    0.00         3.00    -0.25    -1.19
## Y1                      5959   75       2.45       9.53 |     0.05    0.00       144.00     7.15    64.51
## Y2                      5811  223       0.59       2.46 |     0.08    0.00        64.17    14.88   301.77
## Clus*                   6034         1041.70     597.90 |  1016.00    1.00      2110.00     0.05    -1.13
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## 
## NOTE: `firm`, `W`, `Clus` transformed to numeric.

2.1 Growth curve

## `geom_smooth()` using formula = 'y ~ x'

## `geom_smooth()` using formula = 'y ~ x'

3 LINEAR GROWTH MODEL FOR CARBON EMISSIONS (Scope 1)

3.1 Intraclass correlation estimates

## 
## Hierarchical Linear Model (HLM)
## (also known as) Linear Mixed Model (LMM)
## (also known as) Multilevel Linear Model (MLM)
## 
## Model Information:
## Formula: Y1 ~ 1 + (1 | Clus)
## Level-1 Observations: N = 5959
## Level-2 Groups/Clusters: Clus, 2082
## 
## Model Fit:
## AIC = 30271.033
## BIC = 30291.111
## R_(m)² = 0.00000  (Marginal R²: fixed effects)
## R_(c)² = 0.97726  (Conditional R²: fixed + random effects)
## Omega² = NA  (= 1 - proportion of unexplained variance)
## 
## Fixed Effects:
## Unstandardized Coefficients (b or γ):
## Outcome Variable: Y1
## ─────────────────────────────────────────────────────────────────
##                b/γ    S.E.     t     df     p     [95% CI of b/γ]
## ─────────────────────────────────────────────────────────────────
## (Intercept)  2.076 (0.194) 10.68 2086.1 <.001 ***  [1.695, 2.457]
## ─────────────────────────────────────────────────────────────────
## 'df' is estimated by Satterthwaite approximation.
## 
## Random Effects:
## ───────────────────────────────────────────
##  Cluster   K   Parameter   Variance     ICC
## ───────────────────────────────────────────
##  Clus     2082 (Intercept) 77.82534 0.97726
##  Residual                   1.81124        
## ───────────────────────────────────────────
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 5959 observations ("Y1")
## Level 2: K = 2082 groups ("Clus")
## 
##        n (group sizes)
## Min.             1.000
## Median           3.000
## Mean             2.862
## Max.             4.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "Y1"
## 
## ICC(1) = 0.977 (non-independence of data)
## ICC(2) = 0.990 (reliability of group means)
## 
## rWG variable: "Y1"
## 
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.    NA's
## ─────────────────────────────────────────────────────
## rWG  0.709   1.000  1.000 0.999   1.000 1.000 383.000
## ─────────────────────────────────────────────────────

3.2 Unconditional growth model: 1-1

## 
## Hierarchical Linear Model (HLM)
## (also known as) Linear Mixed Model (LMM)
## (also known as) Multilevel Linear Model (MLM)
## 
## Model Information:
## Formula: Y1 ~ T + (T | Clus)
## Level-1 Observations: N = 5959
## Level-2 Groups/Clusters: Clus, 2082
## 
## Model Fit:
## AIC = 28798.241
## BIC = 28838.397
## R_(m)² = 0.00005  (Marginal R²: fixed effects)
## R_(c)² = 0.98929  (Conditional R²: fixed + random effects)
## Omega² = NA  (= 1 - proportion of unexplained variance)
## 
## ANOVA Table:
## ──────────────────────────────────────────────
##    Sum Sq Mean Sq NumDF   DenDF    F     p    
## ──────────────────────────────────────────────
## T    5.95    5.95  1.00 1968.02 6.93  .009 ** 
## ──────────────────────────────────────────────
## 
## Fixed Effects:
## Unstandardized Coefficients (b or γ):
## Outcome Variable: Y1
## ───────────────────────────────────────────────────────────────────
##                 b/γ    S.E.     t     df     p      [95% CI of b/γ]
## ───────────────────────────────────────────────────────────────────
## (Intercept)   2.172 (0.213) 10.18 2096.0 <.001 *** [ 1.754,  2.590]
## T            -0.060 (0.023) -2.63 1968.0  .009 **  [-0.104, -0.015]
## ───────────────────────────────────────────────────────────────────
## 'df' is estimated by Satterthwaite approximation.
## 
## Standardized Coefficients (β):
## Outcome Variable: Y1
## ─────────────────────────────────────────────────────────
##         β    S.E.     t     df     p        [95% CI of β]
## ─────────────────────────────────────────────────────────
## T  -0.007 (0.003) -2.63 1968.0  .009 **  [-0.012, -0.002]
## ─────────────────────────────────────────────────────────
## 
## Random Effects:
## ───────────────────────────────────────────
##  Cluster   K   Parameter   Variance     ICC
## ───────────────────────────────────────────
##  Clus     2082 (Intercept) 91.94705 0.99075
##                T            0.54333        
##  Residual                   0.85865        
## ───────────────────────────────────────────

3.3 Conditional growth model: Build the Level 2 Model

## 
## Hierarchical Linear Model (HLM)
## (also known as) Linear Mixed Model (LMM)
## (also known as) Multilevel Linear Model (MLM)
## 
## Model Information:
## Formula: Y1 ~ T + W + (T | Clus)
## Level-1 Observations: N = 5959
## Level-2 Groups/Clusters: Clus, 2082
## 
## Model Fit:
## AIC = 28788.152
## BIC = 28835.001
## R_(m)² = 0.00506  (Marginal R²: fixed effects)
## R_(c)² = 0.98923  (Conditional R²: fixed + random effects)
## Omega² = NA  (= 1 - proportion of unexplained variance)
## 
## ANOVA Table:
## ───────────────────────────────────────────────
##    Sum Sq Mean Sq NumDF   DenDF     F     p    
## ───────────────────────────────────────────────
## T    6.08    6.08  1.00 1965.27  7.08  .008 ** 
## W   10.49   10.49  1.00 2147.59 12.22 <.001 ***
## ───────────────────────────────────────────────
## 
## Fixed Effects:
## Unstandardized Coefficients (b or γ):
## Outcome Variable: Y1
## ───────────────────────────────────────────────────────────────────
##                 b/γ    S.E.     t     df     p      [95% CI of b/γ]
## ───────────────────────────────────────────────────────────────────
## (Intercept)   3.204 (0.364)  8.81 2410.8 <.001 *** [ 2.491,  3.917]
## T            -0.060 (0.023) -2.66 1965.3  .008 **  [-0.105, -0.016]
## W1           -1.412 (0.404) -3.50 2147.6 <.001 *** [-2.204, -0.620]
## ───────────────────────────────────────────────────────────────────
## 'df' is estimated by Satterthwaite approximation.
## 
## Standardized Coefficients (β):
## Outcome Variable: Y1
## ──────────────────────────────────────────────────────────
##          β    S.E.     t     df     p        [95% CI of β]
## ──────────────────────────────────────────────────────────
## T   -0.007 (0.003) -2.66 1965.3  .008 **  [-0.012, -0.002]
## W1  -0.066 (0.019) -3.50 2147.6 <.001 *** [-0.103, -0.029]
## ──────────────────────────────────────────────────────────
## 
## Random Effects:
## ───────────────────────────────────────────
##  Cluster   K   Parameter   Variance     ICC
## ───────────────────────────────────────────
##  Clus     2082 (Intercept) 90.95343 0.99064
##                T            0.54326        
##  Residual                   0.85901        
## ───────────────────────────────────────────

3.4 Running a 1×2 model with grandmean-centered W

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : Y1
## -  Predictor (X) : T
## -  Mediators (M) : -
## - Moderators (W) : W
## - Covariates (C) : -
## -   HLM Clusters : Clus
## 
## Formula of Outcome:
## -    Y1 ~ T*W + (T|Clus)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────
##                          (1) Y1         (2) Y1       
## ─────────────────────────────────────────────────────
## (Intercept)                  2.172 ***      4.034 ***
##                             (0.213)        (0.408)   
## T                           -0.060 **      -0.225 ***
##                             (0.023)        (0.043)   
## W1                                         -2.553 ***
##                                            (0.477)   
## T:W1                                        0.227 ***
##                                            (0.050)   
## ─────────────────────────────────────────────────────
## Marginal R^2                 0.000          0.012    
## Conditional R^2              0.989          0.989    
## AIC                      28798.241      28774.157    
## BIC                      28838.397      28827.698    
## Num. obs.                 5959           5959        
## Num. groups: Clus         2082           2082        
## Var: Clus (Intercept)       91.947         90.760    
## Var: Clus T                  0.543          0.535    
## Cov: Clus (Intercept) T     -4.320         -4.219    
## Var: Residual                0.859          0.858    
## ─────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 5959 (75 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "Y1" (Y)
## ───────────────────────────────
##            F df1  df2     p    
## ───────────────────────────────
## T * W  20.25   1 1896 <.001 ***
## ───────────────────────────────
## 
## Simple Slopes: "T" (X) ==> "Y1" (Y)
## ─────────────────────────────────────────────────────
##  "W" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────
##  0   -0.225 (0.043) -5.238 <.001 *** [-0.309, -0.141]
##  1    0.002 (0.027)  0.090  .929     [-0.050,  0.054]
## ─────────────────────────────────────────────────────

Interpretation of cross level results of growth model:

  • The intercept γ00=54.704: The predicted Y who are at the T= 0 and W = 0.

  • γ10 of T=-5.143: There is a significant main effect of time. Specifically, Y changes by -5.143 day for an observation that is at the W =0.

  • γ10 of W=-.425: There is a insignificant main effect of W, such that the expectation that observation that is higher in W are less Y at T = 0 than observations who are lower in W is not supported.

  • γ11 of T*W=.064: The change in the growth rate (slope of T on Y) across Clus when W increases by 1 point.

  • Simple slope tests (e.g., Preacher, Curran, & Bauer, 2006): This test is used to examine growth rate (i.e., relationship between T and Y) is significant at a particular value of W. T was significantly related to Y for both High-W and Low-W types. The simple slope for growth rate (slope of T on Y) is negative in Low-W group (γ = -4.061, p < .001), whereas the growth rate less negative in Low-W group (γ = −1.191, p < .05).

But since the raw value is used, it should be interpreted. The problem is that W does not have a 0 value. Therefore, it is recommended to use the value of W group centering in the analysis

3.4.1 Draw adjustment diagram

## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                          y (MLMNull)   y (MLM11RR.a1)  y (MLM21RR.b1)  y (MLM1x2.c2)
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                  2.08 ***      2.17 ***        3.20 ***        4.03 *** 
##                             (0.19)        (0.21)          (0.36)          (0.41)    
## T                                         -0.06 **        -0.06 **        -0.22 *** 
##                                           (0.02)          (0.02)          (0.04)    
## W1                                                        -1.41 ***       -2.55 *** 
##                                                           (0.40)          (0.48)    
## T:W1                                                                       0.23 *** 
##                                                                           (0.05)    
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.00          0.00            0.01            0.01     
## Conditional R^2              0.98          0.99            0.99            0.99     
## AIC                      30271.03      28798.24        28788.15        28774.16     
## BIC                      30291.11      28838.40        28835.00        28827.70     
## Num. obs.                 5959          5959            5959            5959        
## Num. groups: Clus         2082          2082            2082            2082        
## Var: Clus (Intercept)       77.83         91.95           90.95           90.76     
## Var: Residual                1.81          0.86            0.86            0.86     
## Var: Clus T                                0.54            0.54            0.53     
## Cov: Clus (Intercept) T                   -4.32           -4.26           -4.22     
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.

4 LINEAR GROWTH MODEL FOR CARBON EMISSIONS (SCOPE 2)

4.1 Intraclass correlation estimates

## 
## Hierarchical Linear Model (HLM)
## (also known as) Linear Mixed Model (LMM)
## (also known as) Multilevel Linear Model (MLM)
## 
## Model Information:
## Formula: Y2 ~ 1 + (1 | Clus)
## Level-1 Observations: N = 5811
## Level-2 Groups/Clusters: Clus, 2049
## 
## Model Fit:
## AIC = 21748.618
## BIC = 21768.621
## R_(m)² = 0.00000  (Marginal R²: fixed effects)
## R_(c)² = 0.82115  (Conditional R²: fixed + random effects)
## Omega² = NA  (= 1 - proportion of unexplained variance)
## 
## Fixed Effects:
## Unstandardized Coefficients (b or γ):
## Outcome Variable: Y2
## ─────────────────────────────────────────────────────────────────
##                b/γ    S.E.     t     df     p     [95% CI of b/γ]
## ─────────────────────────────────────────────────────────────────
## (Intercept)  0.526 (0.050) 10.59 2086.7 <.001 ***  [0.429, 0.624]
## ─────────────────────────────────────────────────────────────────
## 'df' is estimated by Satterthwaite approximation.
## 
## Random Effects:
## ───────────────────────────────────────────
##  Cluster   K   Parameter   Variance     ICC
## ───────────────────────────────────────────
##  Clus     2049 (Intercept)  4.61345 0.82115
##  Residual                   1.00480        
## ───────────────────────────────────────────
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 5811 observations ("Y2")
## Level 2: K = 2049 groups ("Clus")
## 
##        n (group sizes)
## Min.             1.000
## Median           3.000
## Mean             2.836
## Max.             4.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "Y2"
## 
## ICC(1) = 0.821 (non-independence of data)
## ICC(2) = 0.912 (reliability of group means)
## 
## rWG variable: "Y2"
## 
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.    NA's
## ─────────────────────────────────────────────────────
## rWG  0.000   1.000  1.000 0.998   1.000 1.000 399.000
## ─────────────────────────────────────────────────────

4.2 Unconditional growth model: 1-1

## 
## Hierarchical Linear Model (HLM)
## (also known as) Linear Mixed Model (LMM)
## (also known as) Multilevel Linear Model (MLM)
## 
## Model Information:
## Formula: Y2 ~ T + (T | Clus)
## Level-1 Observations: N = 5811
## Level-2 Groups/Clusters: Clus, 2049
## 
## Model Fit:
## AIC = 21040.022
## BIC = 21080.027
## R_(m)² = 0.00057  (Marginal R²: fixed effects)
## R_(c)² = 0.89646  (Conditional R²: fixed + random effects)
## Omega² = NA  (= 1 - proportion of unexplained variance)
## 
## ANOVA Table:
## ──────────────────────────────────────────────
##    Sum Sq Mean Sq NumDF   DenDF    F     p    
## ──────────────────────────────────────────────
## T    5.73    5.73  1.00 1597.51 9.48  .002 ** 
## ──────────────────────────────────────────────
## 
## Fixed Effects:
## Unstandardized Coefficients (b or γ):
## Outcome Variable: Y2
## ───────────────────────────────────────────────────────────────────
##                 b/γ    S.E.     t     df     p      [95% CI of b/γ]
## ───────────────────────────────────────────────────────────────────
## (Intercept)   0.623 (0.068)  9.16 1900.7 <.001 *** [ 0.490,  0.757]
## T            -0.054 (0.018) -3.08 1597.5  .002 **  [-0.088, -0.020]
## ───────────────────────────────────────────────────────────────────
## 'df' is estimated by Satterthwaite approximation.
## 
## Standardized Coefficients (β):
## Outcome Variable: Y2
## ─────────────────────────────────────────────────────────
##         β    S.E.     t     df     p        [95% CI of β]
## ─────────────────────────────────────────────────────────
## T  -0.023 (0.008) -3.08 1597.5  .002 **  [-0.038, -0.008]
## ─────────────────────────────────────────────────────────
## 
## Random Effects:
## ───────────────────────────────────────────
##  Cluster   K   Parameter   Variance     ICC
## ───────────────────────────────────────────
##  Clus     2049 (Intercept)  7.62329 0.92652
##                T            0.27783        
##  Residual                   0.60457        
## ───────────────────────────────────────────

4.3 Conditional growth model: Build the Level 2 Model

## 
## Hierarchical Linear Model (HLM)
## (also known as) Linear Mixed Model (LMM)
## (also known as) Multilevel Linear Model (MLM)
## 
## Model Information:
## Formula: Y2 ~ T + W + (T | Clus)
## Level-1 Observations: N = 5811
## Level-2 Groups/Clusters: Clus, 2049
## 
## Model Fit:
## AIC = 21016.300
## BIC = 21062.973
## R_(m)² = 0.01173  (Marginal R²: fixed effects)
## R_(c)² = 0.89653  (Conditional R²: fixed + random effects)
## Omega² = NA  (= 1 - proportion of unexplained variance)
## 
## ANOVA Table:
## ───────────────────────────────────────────────
##    Sum Sq Mean Sq NumDF   DenDF     F     p    
## ───────────────────────────────────────────────
## T    5.85    5.85  1.00 1597.29  9.68  .002 ** 
## W   17.26   17.26  1.00 2081.92 28.56 <.001 ***
## ───────────────────────────────────────────────
## 
## Fixed Effects:
## Unstandardized Coefficients (b or γ):
## Outcome Variable: Y2
## ───────────────────────────────────────────────────────────────────
##                 b/γ    S.E.     t     df     p      [95% CI of b/γ]
## ───────────────────────────────────────────────────────────────────
## (Intercept)   1.044 (0.104) 10.05 2707.6 <.001 *** [ 0.840,  1.247]
## T            -0.055 (0.018) -3.11 1597.3  .002 **  [-0.089, -0.020]
## W1           -0.570 (0.107) -5.34 2081.9 <.001 *** [-0.779, -0.361]
## ───────────────────────────────────────────────────────────────────
## 'df' is estimated by Satterthwaite approximation.
## 
## Standardized Coefficients (β):
## Outcome Variable: Y2
## ──────────────────────────────────────────────────────────
##          β    S.E.     t     df     p        [95% CI of β]
## ──────────────────────────────────────────────────────────
## T   -0.024 (0.008) -3.11 1597.3  .002 **  [-0.038, -0.009]
## W1  -0.103 (0.019) -5.34 2081.9 <.001 *** [-0.141, -0.065]
## ──────────────────────────────────────────────────────────
## 
## Random Effects:
## ───────────────────────────────────────────
##  Cluster   K   Parameter   Variance     ICC
## ───────────────────────────────────────────
##  Clus     2049 (Intercept)  7.56187 0.92597
##                T            0.27798        
##  Residual                   0.60453        
## ───────────────────────────────────────────

4.4 Running a 1×2 model with grandmean-centered W

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : Y2
## -  Predictor (X) : T
## -  Mediators (M) : -
## - Moderators (W) : W
## - Covariates (C) : -
## -   HLM Clusters : Clus
## 
## Formula of Outcome:
## -    Y2 ~ T*W + (T|Clus)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────
##                          (1) Y2         (2) Y2       
## ─────────────────────────────────────────────────────
## (Intercept)                  0.623 ***      1.043 ***
##                             (0.068)        (0.131)   
## T                           -0.054 **      -0.054    
##                             (0.018)        (0.033)   
## W1                                         -0.568 ***
##                                            (0.153)   
## T:W1                                       -0.000    
##                                            (0.039)   
## ─────────────────────────────────────────────────────
## Marginal R^2                 0.001          0.012    
## Conditional R^2              0.896          0.897    
## AIC                      21040.022      21022.943    
## BIC                      21080.027      21076.283    
## Num. obs.                 5811           5811        
## Num. groups: Clus         2049           2049        
## Var: Clus (Intercept)        7.623          7.565    
## Var: Clus T                  0.278          0.278    
## Cov: Clus (Intercept) T     -1.023         -1.024    
## Var: Residual                0.605          0.605    
## ─────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 5811 (223 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "Y2" (Y)
## ──────────────────────────────
##           F df1  df2     p    
## ──────────────────────────────
## T * W  0.00   1 1520  .990    
## ──────────────────────────────
## 
## Simple Slopes: "T" (X) ==> "Y2" (Y)
## ─────────────────────────────────────────────────────
##  "W" Effect    S.E.      t     p             [95% CI]
## ─────────────────────────────────────────────────────
##  0   -0.054 (0.033) -1.630  .103     [-0.119,  0.011]
##  1   -0.055 (0.021) -2.650  .008 **  [-0.095, -0.014]
## ─────────────────────────────────────────────────────

Interpretation of cross level results of growth model:

  • The intercept γ00=54.704: The predicted Y who are at the T= 0 and W = 0.

  • γ10 of T=-5.143: There is a significant main effect of time. Specifically, Y changes by -5.143 day for an observation that is at the W =0.

  • γ10 of W=-.425: There is a insignificant main effect of W, such that the expectation that observation that is higher in W are less Y at T = 0 than observations who are lower in W is not supported.

  • γ11 of T*W=.064: The change in the growth rate (slope of T on Y) across Clus when W increases by 1 point.

  • Simple slope tests (e.g., Preacher, Curran, & Bauer, 2006): This test is used to examine growth rate (i.e., relationship between T and Y) is significant at a particular value of W. T was significantly related to Y for both High-W and Low-W types. The simple slope for growth rate (slope of T on Y) is negative in Low-W group (γ = -4.061, p < .001), whereas the growth rate less negative in Low-W group (γ = −1.191, p < .05).

But since the raw value is used, it should be interpreted. The problem is that W does not have a 0 value. Therefore, it is recommended to use the value of W group centering in the analysis

4.4.1 Draw adjustment diagram

## 
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────────────────────
##                          y (MLMNull)   y (MLM11RR.a1)  y (MLM21RR.b1)  y (MLM1x2.c2)
## ────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                  0.53 ***      0.62 ***        1.04 ***        1.04 *** 
##                             (0.05)        (0.07)          (0.10)          (0.13)    
## T                                         -0.05 **        -0.05 **        -0.05     
##                                           (0.02)          (0.02)          (0.03)    
## W1                                                        -0.57 ***       -0.57 *** 
##                                                           (0.11)          (0.15)    
## T:W1                                                                      -0.00     
##                                                                           (0.04)    
## ────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                 0.00          0.00            0.01            0.01     
## Conditional R^2              0.82          0.90            0.90            0.90     
## AIC                      21748.62      21040.02        21016.30        21022.94     
## BIC                      21768.62      21080.03        21062.97        21076.28     
## Num. obs.                 5811          5811            5811            5811        
## Num. groups: Clus         2049          2049            2049            2049        
## Var: Clus (Intercept)        4.61          7.62            7.56            7.56     
## Var: Residual                1.00          0.60            0.60            0.60     
## Var: Clus T                                0.28            0.28            0.28     
## Cov: Clus (Intercept) T                   -1.02           -1.02           -1.02     
## ────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.