Bu dosyada markdown kullanımına ve çeşitli nesnelere ilişkin notlar yer almaktadır.
#toplam <- function() {
# girdi <- readline("Kaca kadar sayilarin toplami hesaplansin:")
# cat("Lutfen pozitif bir tam sayi giriniz. \n")
# n <- as.integer(girdi)
# sonuc <- sum(1:n)
# cat("1'den", n,"'e kadar olan sayilarin toplami:",sonuc,"\n")
#}
#toplam(5)
data(WorldPhones)
data(cars)
data(iris)
dim(cars)
## [1] 50 2
nrow(cars)
## [1] 50
ncol(cars)
## [1] 2
head(cars)
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
head(WorldPhones)
## N.Amer Europe Asia S.Amer Oceania Africa Mid.Amer
## 1951 45939 21574 2876 1815 1646 89 555
## 1956 60423 29990 4708 2568 2366 1411 733
## 1957 64721 32510 5230 2695 2526 1546 773
## 1958 68484 35218 6662 2845 2691 1663 836
## 1959 71799 37598 6856 3000 2868 1769 911
## 1960 76036 40341 8220 3145 3054 1905 1008
tail(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
tail(WorldPhones,n=3)
## N.Amer Europe Asia S.Amer Oceania Africa Mid.Amer
## 1959 71799 37598 6856 3000 2868 1769 911
## 1960 76036 40341 8220 3145 3054 1905 1008
## 1961 79831 43173 9053 3338 3224 2005 1076
example("WorldPhones")
##
## WrldPh> require(graphics)
##
## WrldPh> matplot(rownames(WorldPhones), WorldPhones, type = "b", log = "y",
## WrldPh+ xlab = "Year", ylab = "Number of telephones (1000's)")
##
## WrldPh> legend(1951.5, 80000, colnames(WorldPhones), col = 1:6, lty = 1:5,
## WrldPh+ pch = rep(21, 7))
##
## WrldPh> title(main = "World phones data: log scale for response")
matplot(rownames(WorldPhones), WorldPhones, type = "b", log = "y",
xlab = "Year", ylab = "Number of telephones (1000's)")
legend("bottomright", colnames(WorldPhones), col = 1:6, lty = 1:5,
pch = rep(21, 7))
title(main = "World phones data: log scale for response")
data(CTTdata,package = "CTT")
head(CTTdata)
## i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20
## 1 A B B B B C B C B D D C A B A D B D A C
## 2 C D A D C B D B D A D D A B C C C A D C
## 3 B D C D A B A C B D B A A D D A B C B B
## 4 C C D D D A A D D D A B C B D B C B C A
## 5 A A A D A A D B A C A D C C C C A A A B
## 6 A A B C C A A A A A B C C C C B D C D D
#df[,1,drop=FALSE] # bu bicimiyle sutunu da data.frame ceker. kritik
data(diamonds)
subset(diamonds,price > 1000 & cut == c("Fair","Good"))
## # A tibble: 2,672 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.7 Good E VS2 57.5 58 2759 5.85 5.9 3.38
## 2 0.7 Fair F VS2 65.3 55 2762 5.63 5.58 3.66
## 3 0.91 Fair H SI2 64.4 57 2763 6.11 6.09 3.93
## 4 0.7 Good H VVS2 62.1 64 2767 5.62 5.65 3.5
## 5 0.71 Good E VS2 59.2 61 2772 5.8 5.88 3.46
## 6 0.83 Good I VS2 64.6 54 2774 5.85 5.88 3.79
## 7 0.71 Good F VS2 63.8 58 2777 5.61 5.64 3.59
## 8 0.7 Good E VS2 64.1 59 2777 5.64 5.59 3.6
## 9 0.98 Fair H SI2 67.9 60 2777 6.05 5.97 4.08
## 10 0.7 Good E VS1 57.2 62 2782 5.81 5.77 3.31
## # ℹ 2,662 more rows
df2 <- data.frame(
S1 = sample(0:100,20),
S2 = runif(n=20,min=50,max=70)
)
df2$S3 <- sample(60:80,20,replace = TRUE)
df2[["ort"]] <- round(rowMeans(df2),2)
head(df2)
## S1 S2 S3 ort
## 1 76 55.90136 60 63.97
## 2 17 55.45469 63 45.15
## 3 27 54.05751 65 48.69
## 4 4 63.49563 72 46.50
## 5 12 59.80847 74 48.60
## 6 57 59.50933 71 62.50
cbind(df2,S4 = 10)
## S1 S2 S3 ort S4
## 1 76 55.90136 60 63.97 10
## 2 17 55.45469 63 45.15 10
## 3 27 54.05751 65 48.69 10
## 4 4 63.49563 72 46.50 10
## 5 12 59.80847 74 48.60 10
## 6 57 59.50933 71 62.50 10
## 7 96 69.99334 68 78.00 10
## 8 90 62.61017 64 72.20 10
## 9 42 64.16913 71 59.06 10
## 10 31 53.82784 62 48.94 10
## 11 60 68.61056 62 63.54 10
## 12 46 64.18616 66 58.73 10
## 13 65 64.92957 65 64.98 10
## 14 24 65.62587 72 53.88 10
## 15 52 58.40134 64 58.13 10
## 16 59 52.84055 69 60.28 10
## 17 58 63.31909 75 65.44 10
## 18 55 51.77567 70 58.93 10
## 19 87 65.92127 76 76.31 10
## 20 53 52.87757 70 58.63 10
iris$carpim <- iris$Sepal.Length * iris$Sepal.Width
head(iris[,c(6,1:5)],10)
## carpim Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 17.85 5.1 3.5 1.4 0.2 setosa
## 2 14.70 4.9 3.0 1.4 0.2 setosa
## 3 15.04 4.7 3.2 1.3 0.2 setosa
## 4 14.26 4.6 3.1 1.5 0.2 setosa
## 5 18.00 5.0 3.6 1.4 0.2 setosa
## 6 21.06 5.4 3.9 1.7 0.4 setosa
## 7 15.64 4.6 3.4 1.4 0.3 setosa
## 8 17.00 5.0 3.4 1.5 0.2 setosa
## 9 12.76 4.4 2.9 1.4 0.2 setosa
## 10 15.19 4.9 3.1 1.5 0.1 setosa
df2 <- df2[,-4]
df2$S3 <- NULL
head(df2,3)
## S1 S2
## 1 76 55.90136
## 2 17 55.45469
## 3 27 54.05751
# eklenecek iki satirlik veri seti olusturma
df3 <- data.frame(S1=c(50,60),S2=c(55.3,65.5))
# yeni veri seti
df4 <- rbind (df2,df3)
dim(df4)
## [1] 22 2
str(df4)
## 'data.frame': 22 obs. of 2 variables:
## $ S1: num 76 17 27 4 12 57 96 90 42 31 ...
## $ S2: num 55.9 55.5 54.1 63.5 59.8 ...
attributes(df4)
## $names
## [1] "S1" "S2"
##
## $row.names
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
##
## $class
## [1] "data.frame"
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
summary(cars$speed)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.0 12.0 15.0 15.4 19.0 25.0
###### Listeler
require(stats); require(graphics)
fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
summary(fm1)
##
## Call:
## lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.2422 -2.6857 -0.2488 2.4280 9.7509
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.5660865 7.3545161 3.884 0.000334 ***
## pop15 -0.4611931 0.1446422 -3.189 0.002603 **
## pop75 -1.6914977 1.0835989 -1.561 0.125530
## dpi -0.0003369 0.0009311 -0.362 0.719173
## ddpi 0.4096949 0.1961971 2.088 0.042471 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.803 on 45 degrees of freedom
## Multiple R-squared: 0.3385, Adjusted R-squared: 0.2797
## F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904
str(fm1)
## List of 12
## $ coefficients : Named num [1:5] 28.566087 -0.461193 -1.691498 -0.000337 0.409695
## ..- attr(*, "names")= chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## $ residuals : Named num [1:50] 0.864 0.616 2.219 -0.698 3.553 ...
## ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## $ effects : Named num [1:50] -68.38 -14.29 7.3 -3.52 -7.94 ...
## ..- attr(*, "names")= chr [1:50] "(Intercept)" "pop15" "pop75" "dpi" ...
## $ rank : int 5
## $ fitted.values: Named num [1:50] 10.57 11.45 10.95 6.45 9.33 ...
## ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## $ assign : int [1:5] 0 1 2 3 4
## $ qr :List of 5
## ..$ qr : num [1:50, 1:5] -7.071 0.141 0.141 0.141 0.141 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
## .. .. ..$ : chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
## .. ..- attr(*, "assign")= int [1:5] 0 1 2 3 4
## ..$ qraux: num [1:5] 1.14 1.17 1.16 1.15 1.05
## ..$ pivot: int [1:5] 1 2 3 4 5
## ..$ tol : num 1e-07
## ..$ rank : int 5
## ..- attr(*, "class")= chr "qr"
## $ df.residual : int 45
## $ xlevels : Named list()
## $ call : language lm(formula = sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
## $ terms :Classes 'terms', 'formula' language sr ~ pop15 + pop75 + dpi + ddpi
## .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
## .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. ..- attr(*, "order")= int [1:4] 1 1 1 1
## .. ..- attr(*, "intercept")= int 1
## .. ..- attr(*, "response")= int 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
## .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
## .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## $ model :'data.frame': 50 obs. of 5 variables:
## ..$ sr : num [1:50] 11.43 12.07 13.17 5.75 12.88 ...
## ..$ pop15: num [1:50] 29.4 23.3 23.8 41.9 42.2 ...
## ..$ pop75: num [1:50] 2.87 4.41 4.43 1.67 0.83 2.85 1.34 0.67 1.06 1.14 ...
## ..$ dpi : num [1:50] 2330 1508 2108 189 728 ...
## ..$ ddpi : num [1:50] 2.87 3.93 3.82 0.22 4.56 2.43 2.67 6.51 3.08 2.8 ...
## ..- attr(*, "terms")=Classes 'terms', 'formula' language sr ~ pop15 + pop75 + dpi + ddpi
## .. .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
## .. .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
## .. .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## .. .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
## .. .. ..- attr(*, "order")= int [1:4] 1 1 1 1
## .. .. ..- attr(*, "intercept")= int 1
## .. .. ..- attr(*, "response")= int 1
## .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
## .. .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
## .. .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
## - attr(*, "class")= chr "lm"
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
wls <- fa(Harman74.cor$cov,4,fm="wls")
## Loading required namespace: GPArotation
str(wls)
## List of 46
## $ residual : num [1:24, 1:24] 0.4452 -0.0348 -0.0152 0.0401 0.0145 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ dof : num 186
## $ ENull : num NA
## $ chi : num NA
## $ rms : num 0.0408
## $ nh : logi NA
## $ EPVAL : num NA
## $ crms : num 0.0497
## $ EBIC : num NA
## $ ESABIC : num NA
## $ fit : num 0.903
## $ fit.off : num 0.984
## $ sd : num 0.04
## $ factors : num 4
## $ complexity : Named num [1:24] 1.03 1.04 1.23 1.25 1.05 ...
## ..- attr(*, "names")= chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ n.obs : logi NA
## $ PVAL : logi NA
## $ objective : num 1.72
## $ criteria : Named num [1:3] 1.72 NA NA
## ..- attr(*, "names")= chr [1:3] "objective" "" ""
## $ Call : language fa(r = Harman74.cor$cov, nfactors = 4, fm = "wls")
## $ null.model : num 11.4
## $ null.dof : num 276
## $ r.scores : num [1:4, 1:4] 1 0.484 0.339 0.491 0.484 ...
## $ R2 : num [1:4] 0.918 0.815 0.859 0.766
## $ valid : num [1:4] 0.933 0.862 0.879 0.851
## $ score.cor : num [1:4, 1:4] 1 0.627 0.485 0.493 0.627 ...
## $ weights : num [1:24, 1:4] -0.02148 -0.00436 0.02699 0.00951 0.16055 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ rotation : chr "oblimin"
## $ hyperplane : Named num [1:4] 14 9 16 14
## ..- attr(*, "names")= chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ communality : Named num [1:24] 0.555 0.227 0.344 0.349 0.642 ...
## ..- attr(*, "names")= chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ communalities: Named num [1:24] 0.561 0.22 0.356 0.349 0.648 ...
## ..- attr(*, "names")= chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ uniquenesses : Named num [1:24] 0.445 0.773 0.656 0.651 0.358 ...
## ..- attr(*, "names")= chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ values : num [1:24] 7.646 1.692 1.221 0.915 0.403 ...
## $ e.values : num [1:24] 8.14 2.1 1.69 1.5 1.03 ...
## $ loadings : 'loadings' num [1:24, 1:4] 0.0427 0.056 0.0874 0.1782 0.7639 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ model : num [1:24, 1:24] 0.555 0.353 0.418 0.428 0.306 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ fm : chr "wls"
## $ rot.mat : num [1:4, 1:4] 0.4887 -0.8531 -0.6178 -0.0472 0.2601 ...
## $ Phi : num [1:4, 1:4] 1 0.41 0.295 0.408 0.41 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ Structure : 'loadings' num [1:24, 1:4] 0.361 0.241 0.29 0.369 0.794 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ method : chr "regression"
## $ R2.scores : Named num [1:4] 0.918 0.815 0.859 0.766
## ..- attr(*, "names")= chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ r : num [1:24, 1:24] 1 0.318 0.403 0.468 0.321 0.335 0.304 0.332 0.326 0.116 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## .. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
## $ fn : chr "fa"
## $ Vaccounted : num [1:5, 1:4] 3.996 0.166 0.166 0.348 0.348 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:5] "SS loadings" "Proportion Var" "Cumulative Var" "Proportion Explained" ...
## .. ..$ : chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## $ ECV : Named num [1:4] 0.348 0.592 0.804 1
## ..- attr(*, "names")= chr [1:4] "WLS1" "WLS3" "WLS2" "WLS4"
## - attr(*, "class")= chr [1:2] "psych" "fa"
#odev
#Pearson Korelasyon matrisini Markdown'da Latex ile yaz.