barplot(apply(data,1,mean))#按行做均值条形图多元数据直观表示+线下回归分析
1 多元数据直观表示
1.1 各省消费项目均值条形图
省份过多,各省的名称均不能全部显示
将横轴左边旋转90度,各省的名称均可显示
barplot(apply(data,1,mean),las=3)#按行做均值条形图利用ggplot2包作图较为美观
data %>%
mutate(Average_Consumption = rowMeans(select(., -1), na.rm = TRUE)) %>%
ggplot(aes(x = reorder(row.names(data), -Average_Consumption), y = Average_Consumption)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
labs(title = "各省消费项目均值条形图", x = "", y = "均值") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) 1.2 各消费项目均值条形图
按消费项目做均值图条形图
barplot(apply(data,2,mean))#按列做均值图条形图对不同项目的条形添加不同颜色
barplot(apply(data,2,mean),col=1:8) #按列做彩色均值图条形图去掉食品列后的数据按列做均值条形图
barplot(apply(data[,2:8],2,mean))按消费项目做中位数条形图
barplot(apply(data,2,median))利用ggplot作均值条形图
data %>% summarise(across(everything(), mean, na.rm = TRUE)) %>%
pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
) %>%
ggplot(aes(x = Consumption_Type, y = Average, fill = Consumption_Type)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black") +
theme_minimal() +
labs(title = "各消费项目均值条形图", x = "类别", y = "均值",fill = "消费种类")Warning: There was 1 warning in `summarise()`.
ℹ In argument: `across(everything(), mean, na.rm = TRUE)`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.
# Previously
across(a:b, mean, na.rm = TRUE)
# Now
across(a:b, \(x) mean(x, na.rm = TRUE))
使各条形的颜色相同
data %>% summarise(across(everything(), mean, na.rm = TRUE)) %>%
pivot_longer(cols = everything(), names_to = "Consumption_Type", values_to = "Average") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
) %>%
ggplot(aes(x = Consumption_Type, y = Average)) +
geom_bar(stat = "identity", position = position_dodge(), colour = "black", fill = "steelblue") +
theme_minimal() +
labs(title = "各消费项目均值条形图", x = "类别", y = "均值")1.3 各消费项目箱线图
boxplot函数直接作箱线图,默认每个变量(列)作一个箱线,并将全部变量的箱线在同一个图中展示。
boxplot(data)#按列做箱线图boxplot(data,horizontal=T,las=1)#箱线图中图形按水平放置利用ggplot函数作箱线图,需要对数据转化为长结果数据
data %>% pivot_longer(cols = 1:8, names_to = "Consumption_Type", values_to = "Value") %>%
mutate(
Consumption_Type=factor(Consumption_Type,level=c('食品','衣着','设备','医疗','交通','教育','居住','杂项')),
) %>%
ggplot(aes(x = Consumption_Type, y = Value)) +
geom_boxplot() +
labs(title = "各消费项目箱线图", x = "", y = "消费水平") +
theme_minimal() # + coord_flip() 1.4 各消费项目星相图
运用stars函数,将各消费项目用星相图显示,但没有相关图例显示。
stars(data) 通过key.loc函数显示具有图例的360度星相图,由图可知,北京、上海、天津、广东与浙江的消费水平较高。
stars(data,key.loc=c(17,7)) full=F,表示半圆形的图例,北京和上海的各项消费指数都较高。
stars(data,full=F,key.loc=c(17,7))通过draw.segments,显示为具有图例的360度彩色圆形星相图。
stars(data,draw.segments=T,key.loc=c(17,7))1.5 各消费项目脸谱图
运用faces,将各省的消费指标值作为脸谱数据,眼睛鼻子嘴巴等面部内容表示不同指标的情况。
library(aplpack) #加载aplpack包
faces(data)去掉第五个变量按每行8个做脸谱图。
aplpack::faces(data[,-5],ncol.plot=8)effect of variables:
modified item Var
"height of face " "食品"
"width of face " "衣着"
"structure of face" "设备"
"height of mouth " "医疗"
"width of mouth " "教育"
"smiling " "居住"
"height of eyes " "杂项"
"width of eyes " "食品"
"height of hair " "衣着"
"width of hair " "设备"
"style of hair " "医疗"
"height of nose " "教育"
"width of nose " "居住"
"width of ear " "杂项"
"height of ear " "食品"
1.6 各消费项目雷达图
ggplot2的扩展包ggiraphExtra能作雷达图
data[c(1,9,19,28,29,30),] %>%
mutate(省份=rownames(.)) %>%
ggRadar(aes(group = 省份)) 1.7 各消费项目调和曲线图
source用于定义函数
source("msaR.R")#加自定义函数
msa.andrews(data)#绘制调和曲线图msa.andrews(data[c(1:3,7:9,12),])运用andrews绘制调和曲线
library(andrews) See the package vignette with `vignette("andrews")`
andrews(data,clr=5,ymax=6)#选择第1到第3,第7到第9以及第12个观测的多元数据做调和曲线图
andrews(data[c(1:3,7:9,12),],clr=5,ymax=6)2 线性回归分析
2.1 一元线性回归2-1
每周加班工作时间(x)与签发新保单数目(y)呈明显正相关
每周加班工作时间(x)与签发新保单数目(y)的相关系数为0.949 。
利用每周加班工作时间(x)对签发新保单数目(y)作回归,回归方程为
\[ \widehat{y} =46.15+251.17\times x\]
随机误差\(\epsilon\)的标准差\(\sigma\)的估计值为127.06
2.2 多元线性回归2-2
利用广告预算(x1)和销售代理数目(x2)对年销售额(y)作回归,回归方程为:
term estimate std.error statistic p.value (Intercept) -22.74 30.69 -0.74 0.49 x1 0.15 0.11 1.33 0.24 x2 1.22 1.31 0.93 0.40 \[ \widehat{y} =-22.74+0.15\times x1+1.22\times x2\]
5%显著水平下,广告预算(x1)和销售代理数目(x2)的系数均不显著。
广告预算(x1)与销售额(y)相关系数为0.5797;销售代理数目(x2)与销售额(y)相关系数为0.4816 ;广告预算(x1)和销售代理数目(x2)与年销售额(y)的复相关系数为0.4338 。
2.3 多元线性回归2-3
1.从回归方程中可知
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | -5213.1 | 12704.5 | -0.41 | 0.70 |
| GPA | 8508.8 | 2721.6 | 3.13 | 0.03 |
| 年龄 | 181.6 | 283.5 | 0.64 | 0.55 |
\[ \widehat{起始工资} =-5213.12+8508.79\times GPA+181.58\times 年龄\]
2.含义:通过第一题的数据,得出在5%显著水平下,GPA(x1)的P值为0.03小于0.05,所以x1对Y有显著影响,而年龄(x2)的P值为0.55大于0.5,故拒绝原假设,表示不显著。说明学生的GPA(x1)能真正用来解释起始工资样本的变化。
3.当GPA=3.年龄=24,起始工资的预测值为2.4671^{4}
2.4 线性模型选择2-4
货运总量(y)、工业总产值(x1)、农业总产值(x2)、居民非商品支出(x3)的相关系数矩阵为:
y x1 x2 x3 y 1.000 0.556 0.731 0.724 x1 0.556 1.000 0.113 0.398 x2 0.731 0.113 1.000 0.547 x3 0.724 0.398 0.547 1.000散点图矩阵为:
回归方程为:
\[ \widehat{y} =-348.28+3.75\times x1+7.1\times x2+12.45\times x3\]
回归模型的R方为:0.8055 ,说明回归变量之间存在中度相关关系,既因变量Y的变异中有80.55%可以被自变量解释。
回归模型F检验可以得出,统计量F=8.28,对应的p值为0.0149小于0.05,所以拒绝原假设,多元线性回归总体通过总体显著性检验 。t检验说明X1和X3对应t检验的p值均大于0.05,呈现出不显著特征,只有X2对应t检验的p值小于0.05,呈现出显著特征,说明x2对Y有显示影响。
Call: lm(formula = y ~ ., data = data) Residuals: Min 1Q Median 3Q Max -25.20 -17.03 2.63 11.68 33.23 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -348.28 176.46 -1.97 0.096 . x1 3.75 1.93 1.94 0.100 x2 7.10 2.88 2.47 0.049 * x3 12.45 10.57 1.18 0.284 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 23.4 on 6 degrees of freedom Multiple R-squared: 0.806, Adjusted R-squared: 0.708 F-statistic: 8.28 on 3 and 6 DF, p-value: 0.0149剔除不显著的X1和X3后,回归模型为
\[ \widehat{y} =-159.93+9.69\times x2\]
逐步回归的选择的模型为
Start: AIC=70.72 y ~ x2 Df Sum of Sq RSS AIC <none> 7903 70.7 - x2 1 9049 16953 76.4Call: lm(formula = y ~ x2, data = data) Coefficients: (Intercept) x2 -159.93 9.69$$ \widehat{y} =-159.93+9.69\times x2$$