Functions

  1. Create a function named calculate_area_of_rectangle that takes two parameters, length and width, representing the dimensions of a rectangle. The function should calculate and return the area of the rectangle using the formula area = length * width.

Test your function with different 2 sets of values and print the results.

calculate_area_of_rectangle <- function(length, width) {
  area <- length * width
  return(area)
}
calculate_area_of_rectangle(5, 6)
## [1] 30
calculate_area_of_rectangle(1040, 165)
## [1] 171600

2- Design a function called calculate_average that accepts a vector of numeric values as its parameter. The function should calculate the average of the provided values and return the result. Ensure that the function handles the case when an empty vector is passed, and in such cases, it should print a message indicating that the vector is empty. (hint: use if/else)

a <- c(1,23,567,432,15678,32,1345,5)
b <- c()
calculate_average <- function(values) {
  if (length(values) == 0) {
    return(NULL)  # Return NULL if the vector is empty
  } else {
    average <- mean(values)
    return(average)
  }
}
calculate_average(a)
## [1] 2260.375
calculate_average(b)
## NULL

3- Develop a function named check_even_odd that takes an integer as its parameter. The function should determine whether the provided integer is even or odd and print a corresponding message. Test your function on the following values: 14, and 27

check_even_odd <- function(number) {
  if (number %% 2 == 0) {
    print(paste(number, "even."))
  } else {
    print(paste(number, "odd."))
  }
}
check_even_odd(14)
## [1] "14 even."
check_even_odd(27)
## [1] "27 odd."

Dates and Times

Output the date you answered this homework

date()
## [1] "Sat Oct 19 00:55:21 2024"

EDA

Use the airquality dataset and preform the following: 1. check the structure of the data set 2. Check the summary. 3. Check the NA’s 4. Create a question that you can answer using a basic plot(bar graph, histogram, pia chart…)

airquality
##     Ozone Solar.R Wind Temp Month Day
## 1      41     190  7.4   67     5   1
## 2      36     118  8.0   72     5   2
## 3      12     149 12.6   74     5   3
## 4      18     313 11.5   62     5   4
## 5      NA      NA 14.3   56     5   5
## 6      28      NA 14.9   66     5   6
## 7      23     299  8.6   65     5   7
## 8      19      99 13.8   59     5   8
## 9       8      19 20.1   61     5   9
## 10     NA     194  8.6   69     5  10
## 11      7      NA  6.9   74     5  11
## 12     16     256  9.7   69     5  12
## 13     11     290  9.2   66     5  13
## 14     14     274 10.9   68     5  14
## 15     18      65 13.2   58     5  15
## 16     14     334 11.5   64     5  16
## 17     34     307 12.0   66     5  17
## 18      6      78 18.4   57     5  18
## 19     30     322 11.5   68     5  19
## 20     11      44  9.7   62     5  20
## 21      1       8  9.7   59     5  21
## 22     11     320 16.6   73     5  22
## 23      4      25  9.7   61     5  23
## 24     32      92 12.0   61     5  24
## 25     NA      66 16.6   57     5  25
## 26     NA     266 14.9   58     5  26
## 27     NA      NA  8.0   57     5  27
## 28     23      13 12.0   67     5  28
## 29     45     252 14.9   81     5  29
## 30    115     223  5.7   79     5  30
## 31     37     279  7.4   76     5  31
## 32     NA     286  8.6   78     6   1
## 33     NA     287  9.7   74     6   2
## 34     NA     242 16.1   67     6   3
## 35     NA     186  9.2   84     6   4
## 36     NA     220  8.6   85     6   5
## 37     NA     264 14.3   79     6   6
## 38     29     127  9.7   82     6   7
## 39     NA     273  6.9   87     6   8
## 40     71     291 13.8   90     6   9
## 41     39     323 11.5   87     6  10
## 42     NA     259 10.9   93     6  11
## 43     NA     250  9.2   92     6  12
## 44     23     148  8.0   82     6  13
## 45     NA     332 13.8   80     6  14
## 46     NA     322 11.5   79     6  15
## 47     21     191 14.9   77     6  16
## 48     37     284 20.7   72     6  17
## 49     20      37  9.2   65     6  18
## 50     12     120 11.5   73     6  19
## 51     13     137 10.3   76     6  20
## 52     NA     150  6.3   77     6  21
## 53     NA      59  1.7   76     6  22
## 54     NA      91  4.6   76     6  23
## 55     NA     250  6.3   76     6  24
## 56     NA     135  8.0   75     6  25
## 57     NA     127  8.0   78     6  26
## 58     NA      47 10.3   73     6  27
## 59     NA      98 11.5   80     6  28
## 60     NA      31 14.9   77     6  29
## 61     NA     138  8.0   83     6  30
## 62    135     269  4.1   84     7   1
## 63     49     248  9.2   85     7   2
## 64     32     236  9.2   81     7   3
## 65     NA     101 10.9   84     7   4
## 66     64     175  4.6   83     7   5
## 67     40     314 10.9   83     7   6
## 68     77     276  5.1   88     7   7
## 69     97     267  6.3   92     7   8
## 70     97     272  5.7   92     7   9
## 71     85     175  7.4   89     7  10
## 72     NA     139  8.6   82     7  11
## 73     10     264 14.3   73     7  12
## 74     27     175 14.9   81     7  13
## 75     NA     291 14.9   91     7  14
## 76      7      48 14.3   80     7  15
## 77     48     260  6.9   81     7  16
## 78     35     274 10.3   82     7  17
## 79     61     285  6.3   84     7  18
## 80     79     187  5.1   87     7  19
## 81     63     220 11.5   85     7  20
## 82     16       7  6.9   74     7  21
## 83     NA     258  9.7   81     7  22
## 84     NA     295 11.5   82     7  23
## 85     80     294  8.6   86     7  24
## 86    108     223  8.0   85     7  25
## 87     20      81  8.6   82     7  26
## 88     52      82 12.0   86     7  27
## 89     82     213  7.4   88     7  28
## 90     50     275  7.4   86     7  29
## 91     64     253  7.4   83     7  30
## 92     59     254  9.2   81     7  31
## 93     39      83  6.9   81     8   1
## 94      9      24 13.8   81     8   2
## 95     16      77  7.4   82     8   3
## 96     78      NA  6.9   86     8   4
## 97     35      NA  7.4   85     8   5
## 98     66      NA  4.6   87     8   6
## 99    122     255  4.0   89     8   7
## 100    89     229 10.3   90     8   8
## 101   110     207  8.0   90     8   9
## 102    NA     222  8.6   92     8  10
## 103    NA     137 11.5   86     8  11
## 104    44     192 11.5   86     8  12
## 105    28     273 11.5   82     8  13
## 106    65     157  9.7   80     8  14
## 107    NA      64 11.5   79     8  15
## 108    22      71 10.3   77     8  16
## 109    59      51  6.3   79     8  17
## 110    23     115  7.4   76     8  18
## 111    31     244 10.9   78     8  19
## 112    44     190 10.3   78     8  20
## 113    21     259 15.5   77     8  21
## 114     9      36 14.3   72     8  22
## 115    NA     255 12.6   75     8  23
## 116    45     212  9.7   79     8  24
## 117   168     238  3.4   81     8  25
## 118    73     215  8.0   86     8  26
## 119    NA     153  5.7   88     8  27
## 120    76     203  9.7   97     8  28
## 121   118     225  2.3   94     8  29
## 122    84     237  6.3   96     8  30
## 123    85     188  6.3   94     8  31
## 124    96     167  6.9   91     9   1
## 125    78     197  5.1   92     9   2
## 126    73     183  2.8   93     9   3
## 127    91     189  4.6   93     9   4
## 128    47      95  7.4   87     9   5
## 129    32      92 15.5   84     9   6
## 130    20     252 10.9   80     9   7
## 131    23     220 10.3   78     9   8
## 132    21     230 10.9   75     9   9
## 133    24     259  9.7   73     9  10
## 134    44     236 14.9   81     9  11
## 135    21     259 15.5   76     9  12
## 136    28     238  6.3   77     9  13
## 137     9      24 10.9   71     9  14
## 138    13     112 11.5   71     9  15
## 139    46     237  6.9   78     9  16
## 140    18     224 13.8   67     9  17
## 141    13      27 10.3   76     9  18
## 142    24     238 10.3   68     9  19
## 143    16     201  8.0   82     9  20
## 144    13     238 12.6   64     9  21
## 145    23      14  9.2   71     9  22
## 146    36     139 10.3   81     9  23
## 147     7      49 10.3   69     9  24
## 148    14      20 16.6   63     9  25
## 149    30     193  6.9   70     9  26
## 150    NA     145 13.2   77     9  27
## 151    14     191 14.3   75     9  28
## 152    18     131  8.0   76     9  29
## 153    20     223 11.5   68     9  30
str(airquality)
## 'data.frame':    153 obs. of  6 variables:
##  $ Ozone  : int  41 36 12 18 NA 28 23 19 8 NA ...
##  $ Solar.R: int  190 118 149 313 NA NA 299 99 19 194 ...
##  $ Wind   : num  7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
##  $ Temp   : int  67 72 74 62 56 66 65 59 61 69 ...
##  $ Month  : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Day    : int  1 2 3 4 5 6 7 8 9 10 ...
summary(airquality)
##      Ozone           Solar.R           Wind             Temp      
##  Min.   :  1.00   Min.   :  7.0   Min.   : 1.700   Min.   :56.00  
##  1st Qu.: 18.00   1st Qu.:115.8   1st Qu.: 7.400   1st Qu.:72.00  
##  Median : 31.50   Median :205.0   Median : 9.700   Median :79.00  
##  Mean   : 42.13   Mean   :185.9   Mean   : 9.958   Mean   :77.88  
##  3rd Qu.: 63.25   3rd Qu.:258.8   3rd Qu.:11.500   3rd Qu.:85.00  
##  Max.   :168.00   Max.   :334.0   Max.   :20.700   Max.   :97.00  
##  NA's   :37       NA's   :7                                       
##      Month            Day      
##  Min.   :5.000   Min.   : 1.0  
##  1st Qu.:6.000   1st Qu.: 8.0  
##  Median :7.000   Median :16.0  
##  Mean   :6.993   Mean   :15.8  
##  3rd Qu.:8.000   3rd Qu.:23.0  
##  Max.   :9.000   Max.   :31.0  
## 
is.na(airquality)
##        Ozone Solar.R  Wind  Temp Month   Day
##   [1,] FALSE   FALSE FALSE FALSE FALSE FALSE
##   [2,] FALSE   FALSE FALSE FALSE FALSE FALSE
##   [3,] FALSE   FALSE FALSE FALSE FALSE FALSE
##   [4,] FALSE   FALSE FALSE FALSE FALSE FALSE
##   [5,]  TRUE    TRUE FALSE FALSE FALSE FALSE
##   [6,] FALSE    TRUE FALSE FALSE FALSE FALSE
##   [7,] FALSE   FALSE FALSE FALSE FALSE FALSE
##   [8,] FALSE   FALSE FALSE FALSE FALSE FALSE
##   [9,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [10,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [11,] FALSE    TRUE FALSE FALSE FALSE FALSE
##  [12,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [13,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [14,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [15,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [16,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [17,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [18,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [19,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [20,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [21,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [22,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [23,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [24,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [25,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [26,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [27,]  TRUE    TRUE FALSE FALSE FALSE FALSE
##  [28,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [29,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [30,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [31,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [32,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [33,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [34,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [35,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [36,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [37,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [38,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [39,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [40,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [41,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [42,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [43,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [44,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [45,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [46,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [47,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [48,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [49,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [50,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [51,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [52,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [53,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [54,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [55,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [56,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [57,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [58,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [59,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [60,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [61,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [62,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [63,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [64,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [65,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [66,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [67,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [68,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [69,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [70,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [71,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [72,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [73,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [74,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [75,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [76,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [77,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [78,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [79,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [80,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [81,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [82,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [83,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [84,]  TRUE   FALSE FALSE FALSE FALSE FALSE
##  [85,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [86,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [87,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [88,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [89,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [90,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [91,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [92,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [93,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [94,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [95,] FALSE   FALSE FALSE FALSE FALSE FALSE
##  [96,] FALSE    TRUE FALSE FALSE FALSE FALSE
##  [97,] FALSE    TRUE FALSE FALSE FALSE FALSE
##  [98,] FALSE    TRUE FALSE FALSE FALSE FALSE
##  [99,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [100,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [101,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [102,]  TRUE   FALSE FALSE FALSE FALSE FALSE
## [103,]  TRUE   FALSE FALSE FALSE FALSE FALSE
## [104,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [105,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [106,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [107,]  TRUE   FALSE FALSE FALSE FALSE FALSE
## [108,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [109,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [110,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [111,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [112,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [113,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [114,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [115,]  TRUE   FALSE FALSE FALSE FALSE FALSE
## [116,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [117,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [118,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [119,]  TRUE   FALSE FALSE FALSE FALSE FALSE
## [120,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [121,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [122,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [123,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [124,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [125,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [126,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [127,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [128,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [129,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [130,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [131,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [132,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [133,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [134,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [135,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [136,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [137,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [138,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [139,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [140,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [141,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [142,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [143,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [144,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [145,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [146,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [147,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [148,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [149,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [150,]  TRUE   FALSE FALSE FALSE FALSE FALSE
## [151,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [152,] FALSE   FALSE FALSE FALSE FALSE FALSE
## [153,] FALSE   FALSE FALSE FALSE FALSE FALSE
#Question is witch month has the most amount of variance in temperatures?
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
print(airquality)
##     Ozone Solar.R Wind Temp Month Day
## 1      41     190  7.4   67     5   1
## 2      36     118  8.0   72     5   2
## 3      12     149 12.6   74     5   3
## 4      18     313 11.5   62     5   4
## 5      NA      NA 14.3   56     5   5
## 6      28      NA 14.9   66     5   6
## 7      23     299  8.6   65     5   7
## 8      19      99 13.8   59     5   8
## 9       8      19 20.1   61     5   9
## 10     NA     194  8.6   69     5  10
## 11      7      NA  6.9   74     5  11
## 12     16     256  9.7   69     5  12
## 13     11     290  9.2   66     5  13
## 14     14     274 10.9   68     5  14
## 15     18      65 13.2   58     5  15
## 16     14     334 11.5   64     5  16
## 17     34     307 12.0   66     5  17
## 18      6      78 18.4   57     5  18
## 19     30     322 11.5   68     5  19
## 20     11      44  9.7   62     5  20
## 21      1       8  9.7   59     5  21
## 22     11     320 16.6   73     5  22
## 23      4      25  9.7   61     5  23
## 24     32      92 12.0   61     5  24
## 25     NA      66 16.6   57     5  25
## 26     NA     266 14.9   58     5  26
## 27     NA      NA  8.0   57     5  27
## 28     23      13 12.0   67     5  28
## 29     45     252 14.9   81     5  29
## 30    115     223  5.7   79     5  30
## 31     37     279  7.4   76     5  31
## 32     NA     286  8.6   78     6   1
## 33     NA     287  9.7   74     6   2
## 34     NA     242 16.1   67     6   3
## 35     NA     186  9.2   84     6   4
## 36     NA     220  8.6   85     6   5
## 37     NA     264 14.3   79     6   6
## 38     29     127  9.7   82     6   7
## 39     NA     273  6.9   87     6   8
## 40     71     291 13.8   90     6   9
## 41     39     323 11.5   87     6  10
## 42     NA     259 10.9   93     6  11
## 43     NA     250  9.2   92     6  12
## 44     23     148  8.0   82     6  13
## 45     NA     332 13.8   80     6  14
## 46     NA     322 11.5   79     6  15
## 47     21     191 14.9   77     6  16
## 48     37     284 20.7   72     6  17
## 49     20      37  9.2   65     6  18
## 50     12     120 11.5   73     6  19
## 51     13     137 10.3   76     6  20
## 52     NA     150  6.3   77     6  21
## 53     NA      59  1.7   76     6  22
## 54     NA      91  4.6   76     6  23
## 55     NA     250  6.3   76     6  24
## 56     NA     135  8.0   75     6  25
## 57     NA     127  8.0   78     6  26
## 58     NA      47 10.3   73     6  27
## 59     NA      98 11.5   80     6  28
## 60     NA      31 14.9   77     6  29
## 61     NA     138  8.0   83     6  30
## 62    135     269  4.1   84     7   1
## 63     49     248  9.2   85     7   2
## 64     32     236  9.2   81     7   3
## 65     NA     101 10.9   84     7   4
## 66     64     175  4.6   83     7   5
## 67     40     314 10.9   83     7   6
## 68     77     276  5.1   88     7   7
## 69     97     267  6.3   92     7   8
## 70     97     272  5.7   92     7   9
## 71     85     175  7.4   89     7  10
## 72     NA     139  8.6   82     7  11
## 73     10     264 14.3   73     7  12
## 74     27     175 14.9   81     7  13
## 75     NA     291 14.9   91     7  14
## 76      7      48 14.3   80     7  15
## 77     48     260  6.9   81     7  16
## 78     35     274 10.3   82     7  17
## 79     61     285  6.3   84     7  18
## 80     79     187  5.1   87     7  19
## 81     63     220 11.5   85     7  20
## 82     16       7  6.9   74     7  21
## 83     NA     258  9.7   81     7  22
## 84     NA     295 11.5   82     7  23
## 85     80     294  8.6   86     7  24
## 86    108     223  8.0   85     7  25
## 87     20      81  8.6   82     7  26
## 88     52      82 12.0   86     7  27
## 89     82     213  7.4   88     7  28
## 90     50     275  7.4   86     7  29
## 91     64     253  7.4   83     7  30
## 92     59     254  9.2   81     7  31
## 93     39      83  6.9   81     8   1
## 94      9      24 13.8   81     8   2
## 95     16      77  7.4   82     8   3
## 96     78      NA  6.9   86     8   4
## 97     35      NA  7.4   85     8   5
## 98     66      NA  4.6   87     8   6
## 99    122     255  4.0   89     8   7
## 100    89     229 10.3   90     8   8
## 101   110     207  8.0   90     8   9
## 102    NA     222  8.6   92     8  10
## 103    NA     137 11.5   86     8  11
## 104    44     192 11.5   86     8  12
## 105    28     273 11.5   82     8  13
## 106    65     157  9.7   80     8  14
## 107    NA      64 11.5   79     8  15
## 108    22      71 10.3   77     8  16
## 109    59      51  6.3   79     8  17
## 110    23     115  7.4   76     8  18
## 111    31     244 10.9   78     8  19
## 112    44     190 10.3   78     8  20
## 113    21     259 15.5   77     8  21
## 114     9      36 14.3   72     8  22
## 115    NA     255 12.6   75     8  23
## 116    45     212  9.7   79     8  24
## 117   168     238  3.4   81     8  25
## 118    73     215  8.0   86     8  26
## 119    NA     153  5.7   88     8  27
## 120    76     203  9.7   97     8  28
## 121   118     225  2.3   94     8  29
## 122    84     237  6.3   96     8  30
## 123    85     188  6.3   94     8  31
## 124    96     167  6.9   91     9   1
## 125    78     197  5.1   92     9   2
## 126    73     183  2.8   93     9   3
## 127    91     189  4.6   93     9   4
## 128    47      95  7.4   87     9   5
## 129    32      92 15.5   84     9   6
## 130    20     252 10.9   80     9   7
## 131    23     220 10.3   78     9   8
## 132    21     230 10.9   75     9   9
## 133    24     259  9.7   73     9  10
## 134    44     236 14.9   81     9  11
## 135    21     259 15.5   76     9  12
## 136    28     238  6.3   77     9  13
## 137     9      24 10.9   71     9  14
## 138    13     112 11.5   71     9  15
## 139    46     237  6.9   78     9  16
## 140    18     224 13.8   67     9  17
## 141    13      27 10.3   76     9  18
## 142    24     238 10.3   68     9  19
## 143    16     201  8.0   82     9  20
## 144    13     238 12.6   64     9  21
## 145    23      14  9.2   71     9  22
## 146    36     139 10.3   81     9  23
## 147     7      49 10.3   69     9  24
## 148    14      20 16.6   63     9  25
## 149    30     193  6.9   70     9  26
## 150    NA     145 13.2   77     9  27
## 151    14     191 14.3   75     9  28
## 152    18     131  8.0   76     9  29
## 153    20     223 11.5   68     9  30
airquality$Month <- factor(airquality$Month, labels = month.abb[5:9])
ggplot(airquality, aes(x = Month, y = Temp)) +
  geom_boxplot() +
  labs(x= "Temperature", y= "Months", title= "Varience of temperatures per month")