library(nycflights13),library(tidyverse),View(flights),View(airlines),View(weather), View(planes), View(airports)
library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
lga_to_xna_planes <- flights %>%
filter(origin == "LGA", dest == "XNA") %>%
left_join(planes, by = "tailnum")
lga_to_xna_planes
## # A tibble: 745 × 27
## year.x month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 656 705 -9 1007 940
## 2 2013 1 1 1525 1530 -5 1934 1805
## 3 2013 1 1 1740 1745 -5 2158 2020
## 4 2013 1 2 656 705 -9 1014 940
## 5 2013 1 2 1531 1530 1 1846 1805
## 6 2013 1 2 1740 1745 -5 2035 2020
## 7 2013 1 3 703 705 -2 1014 940
## 8 2013 1 3 1525 1530 -5 1802 1805
## 9 2013 1 3 1737 1745 -8 1953 2020
## 10 2013 1 4 701 705 -4 934 940
## # ℹ 735 more rows
## # ℹ 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
## # manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
## # engine <chr>
library(nycflights13)
library(tidyverse)
flights_with_airline <- flights %>%
left_join(airlines, by = "carrier")
flights_with_airline %>%
select(flight, carrier, name) %>%
head()
## # A tibble: 6 × 3
## flight carrier name
## <int> <chr> <chr>
## 1 1545 UA United Air Lines Inc.
## 2 1714 UA United Air Lines Inc.
## 3 1141 AA American Airlines Inc.
## 4 725 B6 JetBlue Airways
## 5 461 DL Delta Air Lines Inc.
## 6 1696 UA United Air Lines Inc.
library(nycflights13)
library(tidyverse)
commercial_airports <- flights %>%
select(origin, dest) %>%
pivot_longer(cols = c(origin, dest), values_to = "faa") %>%
distinct(faa)
airports_no_flights <- airports %>%
anti_join(commercial_airports, by = "faa")
airports_no_flights %>%
select(faa, name, lat, lon)
## # A tibble: 1,355 × 4
## faa name lat lon
## <chr> <chr> <dbl> <dbl>
## 1 04G Lansdowne Airport 41.1 -80.6
## 2 06A Moton Field Municipal Airport 32.5 -85.7
## 3 06C Schaumburg Regional 42.0 -88.1
## 4 06N Randall Airport 41.4 -74.4
## 5 09J Jekyll Island Airport 31.1 -81.4
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2
## 7 0G6 Williams County Airport 41.5 -84.5
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6
## 10 0S9 Jefferson County Intl 48.1 -123.
## # ℹ 1,345 more rows
library(nycflights13)
library(tidyverse)
high_wind_weather <- weather %>%
filter(wind_speed > 30)
high_wind_airports <- high_wind_weather %>%
inner_join(airports, by = c("origin" = "faa"))
airport_names_high_wind <- high_wind_airports %>%
select(name) %>%
distinct()
airport_names_high_wind
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia