options(repos = c(CRAN = "https://cran.rstudio.com/"))
library(nycflights13)
library(pacman)
library(dplyr)
pacman::p_load(nycflights13)
View(flights)
glimpse(flights)
summary(flights)
maxdep <- max(flights$dep_delay, na.rm=TRUE)
maxdep_id <- which(flights$dep_delay==maxdep)
flights[maxdep_id, 10:12]
sortf <- arrange(flights,desc(dep_delay))
select(sortf, carrier, flight, tailnum, everything())
These 2 methods would work
flights %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay, na.rm = TRUE))
not_cancelled <- flights %>%
filter(!is.na(dep_delay))
not_cancelled %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay))
Tailnum_delay_avg <- flights %>%
group_by(tailnum) %>%
summarise(avg_arr_delay = mean(arr_delay))
summarise(Tailnum_delay_avg)
Sort chart by avg_arr_delay, tailnum is N560AS
flight_times <- flight_times %>%
mutate(before_midnight = last <= 2400)
flight_times <- flight_times %>%
arrange(last)
view(flight_times)
hourplus_delays <- flights %>%
group_by(month) %>%
summarise(total_flights = n(),
delayed_flights = sum(dep_delay > 60, na.rm = TRUE))
hourplus_delays$delayed_flights/hourplus_delays$total_flights
carrier_number <- flights %>% group_by(dest) %>% summarize(carriers = n_distinct(carrier) %>%
arrange(carriers))
view(carrier_number)
delays <- flights %>%
group_by(dest) %>%
summarise(
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)
) %>%
filter(count > 20, dest != "HNL")
delays
LS0tCnRpdGxlOiAiQXNzaWdubWVudDYhIgphdXRob3I6ICJDaHJpcyBNaWxsZXJpY2siCmRhdGU6ICIyMDI0LTEwLTE4IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCmBgYHtyfQpvcHRpb25zKHJlcG9zID0gYyhDUkFOID0gImh0dHBzOi8vY3Jhbi5yc3R1ZGlvLmNvbS8iKSkKbGlicmFyeShueWNmbGlnaHRzMTMpCmxpYnJhcnkocGFjbWFuKQpsaWJyYXJ5KGRwbHlyKQpwYWNtYW46OnBfbG9hZChueWNmbGlnaHRzMTMpCgpWaWV3KGZsaWdodHMpCmdsaW1wc2UoZmxpZ2h0cykKCnN1bW1hcnkoZmxpZ2h0cykKCgoKbWF4ZGVwIDwtIG1heChmbGlnaHRzJGRlcF9kZWxheSwgbmEucm09VFJVRSkKCm1heGRlcF9pZCA8LSB3aGljaChmbGlnaHRzJGRlcF9kZWxheT09bWF4ZGVwKQoKZmxpZ2h0c1ttYXhkZXBfaWQsIDEwOjEyXQoKCnNvcnRmIDwtIGFycmFuZ2UoZmxpZ2h0cyxkZXNjKGRlcF9kZWxheSkpIAoKc2VsZWN0KHNvcnRmLCBjYXJyaWVyLCBmbGlnaHQsIHRhaWxudW0sIGV2ZXJ5dGhpbmcoKSkKYGBgCgojIFRoZXNlIDIgbWV0aG9kcyB3b3VsZCB3b3JrCgoKYGBge3J9CmZsaWdodHMgJT4lIAogIAogIGdyb3VwX2J5KHllYXIsIG1vbnRoLCBkYXkpICU+JSAKICAKICBzdW1tYXJpc2UobWVhbiA9IG1lYW4oZGVwX2RlbGF5LCBuYS5ybSA9IFRSVUUpKQoKCgpub3RfY2FuY2VsbGVkIDwtIGZsaWdodHMgJT4lIAogIAogIGZpbHRlcighaXMubmEoZGVwX2RlbGF5KSkKCm5vdF9jYW5jZWxsZWQgJT4lIAogIAogIGdyb3VwX2J5KHllYXIsIG1vbnRoLCBkYXkpICU+JSAKICAKICBzdW1tYXJpc2UobWVhbiA9IG1lYW4oZGVwX2RlbGF5KSkKCgoKClRhaWxudW1fZGVsYXlfYXZnIDwtIGZsaWdodHMgJT4lIAogIAogIGdyb3VwX2J5KHRhaWxudW0pICU+JSAKICAKICBzdW1tYXJpc2UoYXZnX2Fycl9kZWxheSA9IG1lYW4oYXJyX2RlbGF5KSkKCnN1bW1hcmlzZShUYWlsbnVtX2RlbGF5X2F2ZykKYGBgCgojIFNvcnQgY2hhcnQgYnkgYXZnX2Fycl9kZWxheSwgdGFpbG51bSBpcyBONTYwQVMKCgpgYGB7cn0KCgpmbGlnaHRfdGltZXMgPC0gZmxpZ2h0X3RpbWVzICU+JQogIG11dGF0ZShiZWZvcmVfbWlkbmlnaHQgPSBsYXN0IDw9IDI0MDApCmZsaWdodF90aW1lcyA8LSBmbGlnaHRfdGltZXMgJT4lCiAgYXJyYW5nZShsYXN0KQp2aWV3KGZsaWdodF90aW1lcykKCgpob3VycGx1c19kZWxheXMgPC0gZmxpZ2h0cyAlPiUKICBncm91cF9ieShtb250aCkgJT4lCiAgc3VtbWFyaXNlKHRvdGFsX2ZsaWdodHMgPSBuKCksCiAgICBkZWxheWVkX2ZsaWdodHMgPSBzdW0oZGVwX2RlbGF5ID4gNjAsIG5hLnJtID0gVFJVRSkpCgogICAgICAgIApob3VycGx1c19kZWxheXMkZGVsYXllZF9mbGlnaHRzL2hvdXJwbHVzX2RlbGF5cyR0b3RhbF9mbGlnaHRzCgpjYXJyaWVyX251bWJlciA8LSBmbGlnaHRzICU+JSBncm91cF9ieShkZXN0KSAlPiUgc3VtbWFyaXplKGNhcnJpZXJzID0gbl9kaXN0aW5jdChjYXJyaWVyKSAlPiUgCmFycmFuZ2UoY2FycmllcnMpKQoKdmlldyhjYXJyaWVyX251bWJlcikKCmRlbGF5cyA8LSBmbGlnaHRzICU+JSAKICAKICBncm91cF9ieShkZXN0KSAlPiUgCiAgCiAgc3VtbWFyaXNlKAogICAgCiAgICBjb3VudCA9IG4oKSwKICAgIAogICAgZGlzdCA9IG1lYW4oZGlzdGFuY2UsIG5hLnJtID0gVFJVRSksCiAgICAKICAgIGRlbGF5ID0gbWVhbihhcnJfZGVsYXksIG5hLnJtID0gVFJVRSkKICAgIAogICkgJT4lIAogIAogIGZpbHRlcihjb3VudCA+IDIwLCBkZXN0ICE9ICJITkwiKQoKZGVsYXlzCgpgYGAK