library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
View(flights)
View(airlines)
View(weather)
View(planes)
View(airports)
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
q1 <- flights %>%
filter(origin == "LGA", dest == "XNA") %>%
inner_join(planes, by = "tailnum") %>%
select(tailnum, manufacturer, type, model, origin, dest)
q1
## # A tibble: 66 × 6
## tailnum manufacturer type model origin dest
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 N711MQ GULFSTREAM AEROSPACE Fixed wing multi engine G1159B LGA XNA
## 2 N711MQ GULFSTREAM AEROSPACE Fixed wing multi engine G1159B LGA XNA
## 3 N711MQ GULFSTREAM AEROSPACE Fixed wing multi engine G1159B LGA XNA
## 4 N711MQ GULFSTREAM AEROSPACE Fixed wing multi engine G1159B LGA XNA
## 5 N711MQ GULFSTREAM AEROSPACE Fixed wing multi engine G1159B LGA XNA
## 6 N737MQ CESSNA Fixed wing single engine 172N LGA XNA
## 7 N737MQ CESSNA Fixed wing single engine 172N LGA XNA
## 8 N711MQ GULFSTREAM AEROSPACE Fixed wing multi engine G1159B LGA XNA
## 9 N711MQ GULFSTREAM AEROSPACE Fixed wing multi engine G1159B LGA XNA
## 10 N840MQ CANADAIR LTD Fixed wing multi engine CF-5D LGA XNA
## # ℹ 56 more rows
2. join - Add the airline name to the flights table (1 POINT)
q2 <- flights %>%
inner_join(airlines, by = "carrier")
q2
## # A tibble: 336,776 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 336,766 more rows
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
airports_with_flights <- flights %>%
select(origin) %>%
distinct()
all_airports <- airports %>%
select(faa)
q3 <- all_airports %>%
anti_join(airports_with_flights, by = c("faa" = "origin"))
q3
## # A tibble: 1,455 × 1
## faa
## <chr>
## 1 04G
## 2 06A
## 3 06C
## 4 06N
## 5 09J
## 6 0A9
## 7 0G6
## 8 0G7
## 9 0P2
## 10 0S9
## # ℹ 1,445 more rows