Load the packages

library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Create the code makes a table for each of the below questions.

1. join + filter - Which airplanes fly LGA to XNA (1 POINT)

lga_to_xna_flights <- flights %>%
  inner_join(planes, by = "tailnum") %>%
  filter(origin == "LGA", dest == "XNA") %>% 
  select(tailnum, manufacturer, model) 

print(head(lga_to_xna_flights))
## # A tibble: 6 × 3
##   tailnum manufacturer         model 
##   <chr>   <chr>                <chr> 
## 1 N711MQ  GULFSTREAM AEROSPACE G1159B
## 2 N711MQ  GULFSTREAM AEROSPACE G1159B
## 3 N711MQ  GULFSTREAM AEROSPACE G1159B
## 4 N711MQ  GULFSTREAM AEROSPACE G1159B
## 5 N711MQ  GULFSTREAM AEROSPACE G1159B
## 6 N737MQ  CESSNA               172N

2. join - Add the airline name to the flights table (1 POINT)

flights_with_airlines <- flights %>%
  inner_join(airlines, by = "carrier")

print(head(flights_with_airlines))
## # A tibble: 6 × 20
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1  2013     1     1      517            515         2      830            819
## 2  2013     1     1      533            529         4      850            830
## 3  2013     1     1      542            540         2      923            850
## 4  2013     1     1      544            545        -1     1004           1022
## 5  2013     1     1      554            600        -6      812            837
## 6  2013     1     1      554            558        -4      740            728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>

3. join + select + distinct() - Which airports have no commercial flights (1 POINT)

airports_no_flights <- airports %>%
  anti_join(flights, by = c("faa" = "origin")) %>%
  anti_join(flights, by = c("faa" = "dest")) %>%
  select(faa, name) %>%
  distinct() 

print(head(airports_no_flights))
## # A tibble: 6 × 2
##   faa   name                          
##   <chr> <chr>                         
## 1 04G   Lansdowne Airport             
## 2 06A   Moton Field Municipal Airport 
## 3 06C   Schaumburg Regional           
## 4 06N   Randall Airport               
## 5 09J   Jekyll Island Airport         
## 6 0A9   Elizabethton Municipal Airport

4. EXTRA CREDIT - (2 POINTS) - NO HELP - NO PARTIAL CREDIT Create a table with the names of the airports with the most winds (wind_speed > 30). The table must contain only the airport name (airports$name) and no duplicate rows.

high_wind_airports <- weather %>%
  filter(wind_speed > 30) %>%
  select(origin) %>%
  distinct() %>%
  inner_join(airports, by = c("origin" = "faa")) %>%
  select(name)

print(head(high_wind_airports))
## # A tibble: 3 × 1
##   name               
##   <chr>              
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia