library(readr)
library(stringr)
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
## sleep
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
sum(is.na(dirty_iris$Petal.Length))
## [1] 19
sum(complete.cases(dirty_iris))
## [1] 96
nrow(dirty_iris)
## [1] 150
96/150 * 100
## [1] 64
is.na(dirty_iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## [1,] FALSE FALSE FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE FALSE FALSE
## [3,] FALSE TRUE FALSE FALSE FALSE
## [4,] FALSE FALSE FALSE FALSE FALSE
## [5,] FALSE FALSE FALSE FALSE FALSE
## [6,] FALSE TRUE TRUE FALSE FALSE
## [7,] FALSE FALSE FALSE TRUE FALSE
## [8,] FALSE FALSE FALSE FALSE FALSE
## [9,] FALSE FALSE FALSE FALSE FALSE
## [10,] FALSE FALSE FALSE FALSE FALSE
## [11,] FALSE FALSE FALSE FALSE FALSE
## [12,] FALSE FALSE FALSE FALSE FALSE
## [13,] FALSE FALSE FALSE TRUE FALSE
## [14,] FALSE FALSE FALSE FALSE FALSE
## [15,] TRUE FALSE FALSE FALSE FALSE
## [16,] FALSE FALSE FALSE FALSE FALSE
## [17,] FALSE TRUE FALSE FALSE FALSE
## [18,] FALSE FALSE FALSE FALSE FALSE
## [19,] TRUE FALSE TRUE FALSE FALSE
## [20,] FALSE TRUE FALSE FALSE FALSE
## [21,] FALSE FALSE TRUE FALSE FALSE
## [22,] FALSE TRUE FALSE FALSE FALSE
## [23,] FALSE FALSE TRUE FALSE FALSE
## [24,] FALSE FALSE FALSE FALSE FALSE
## [25,] TRUE FALSE FALSE FALSE FALSE
## [26,] FALSE FALSE FALSE FALSE FALSE
## [27,] FALSE FALSE FALSE FALSE FALSE
## [28,] FALSE FALSE FALSE TRUE FALSE
## [29,] FALSE FALSE FALSE FALSE FALSE
## [30,] TRUE FALSE FALSE FALSE FALSE
## [31,] FALSE FALSE TRUE FALSE FALSE
## [32,] FALSE FALSE FALSE TRUE FALSE
## [33,] FALSE FALSE FALSE FALSE FALSE
## [34,] FALSE FALSE TRUE FALSE FALSE
## [35,] FALSE FALSE FALSE FALSE FALSE
## [36,] FALSE FALSE FALSE FALSE FALSE
## [37,] FALSE FALSE FALSE FALSE FALSE
## [38,] FALSE FALSE FALSE FALSE FALSE
## [39,] FALSE FALSE FALSE FALSE FALSE
## [40,] FALSE FALSE FALSE FALSE FALSE
## [41,] FALSE TRUE FALSE FALSE FALSE
## [42,] FALSE FALSE FALSE FALSE FALSE
## [43,] FALSE TRUE FALSE FALSE FALSE
## [44,] FALSE FALSE FALSE FALSE FALSE
## [45,] FALSE FALSE FALSE FALSE FALSE
## [46,] FALSE FALSE FALSE FALSE FALSE
## [47,] FALSE TRUE TRUE FALSE FALSE
## [48,] FALSE FALSE FALSE FALSE FALSE
## [49,] FALSE FALSE FALSE FALSE FALSE
## [50,] FALSE FALSE FALSE FALSE FALSE
## [51,] FALSE FALSE FALSE FALSE FALSE
## [52,] FALSE FALSE TRUE FALSE FALSE
## [53,] FALSE FALSE FALSE FALSE FALSE
## [54,] FALSE FALSE FALSE FALSE FALSE
## [55,] FALSE FALSE FALSE FALSE FALSE
## [56,] FALSE FALSE FALSE FALSE FALSE
## [57,] FALSE FALSE FALSE FALSE FALSE
## [58,] TRUE FALSE FALSE FALSE FALSE
## [59,] FALSE FALSE FALSE TRUE FALSE
## [60,] FALSE FALSE FALSE FALSE FALSE
## [61,] FALSE FALSE FALSE TRUE FALSE
## [62,] FALSE FALSE FALSE FALSE FALSE
## [63,] FALSE FALSE FALSE FALSE FALSE
## [64,] FALSE FALSE FALSE FALSE FALSE
## [65,] FALSE FALSE FALSE FALSE FALSE
## [66,] FALSE FALSE FALSE FALSE FALSE
## [67,] FALSE FALSE TRUE FALSE FALSE
## [68,] TRUE FALSE FALSE FALSE FALSE
## [69,] FALSE FALSE TRUE TRUE FALSE
## [70,] FALSE FALSE FALSE FALSE FALSE
## [71,] FALSE FALSE FALSE FALSE FALSE
## [72,] FALSE FALSE FALSE FALSE FALSE
## [73,] FALSE FALSE FALSE FALSE FALSE
## [74,] FALSE TRUE FALSE FALSE FALSE
## [75,] FALSE FALSE FALSE FALSE FALSE
## [76,] FALSE FALSE FALSE TRUE FALSE
## [77,] FALSE FALSE FALSE FALSE FALSE
## [78,] FALSE FALSE FALSE FALSE FALSE
## [79,] FALSE FALSE FALSE FALSE FALSE
## [80,] FALSE FALSE FALSE FALSE FALSE
## [81,] FALSE FALSE FALSE FALSE FALSE
## [82,] FALSE FALSE FALSE FALSE FALSE
## [83,] FALSE FALSE FALSE FALSE FALSE
## [84,] FALSE FALSE FALSE FALSE FALSE
## [85,] FALSE FALSE FALSE FALSE FALSE
## [86,] FALSE FALSE FALSE FALSE FALSE
## [87,] FALSE FALSE FALSE FALSE FALSE
## [88,] FALSE FALSE FALSE FALSE FALSE
## [89,] FALSE FALSE FALSE FALSE FALSE
## [90,] FALSE FALSE FALSE FALSE FALSE
## [91,] FALSE FALSE FALSE FALSE FALSE
## [92,] FALSE TRUE FALSE FALSE FALSE
## [93,] FALSE FALSE FALSE FALSE FALSE
## [94,] FALSE FALSE FALSE FALSE FALSE
## [95,] FALSE FALSE FALSE FALSE FALSE
## [96,] FALSE FALSE TRUE FALSE FALSE
## [97,] FALSE FALSE FALSE FALSE FALSE
## [98,] FALSE TRUE FALSE FALSE FALSE
## [99,] FALSE FALSE FALSE FALSE FALSE
## [100,] FALSE FALSE FALSE FALSE FALSE
## [101,] FALSE FALSE FALSE FALSE FALSE
## [102,] FALSE FALSE TRUE FALSE FALSE
## [103,] FALSE FALSE FALSE TRUE FALSE
## [104,] FALSE FALSE FALSE FALSE FALSE
## [105,] FALSE FALSE TRUE FALSE FALSE
## [106,] FALSE TRUE FALSE FALSE FALSE
## [107,] FALSE FALSE FALSE FALSE FALSE
## [108,] FALSE FALSE FALSE TRUE FALSE
## [109,] FALSE FALSE TRUE FALSE FALSE
## [110,] FALSE FALSE FALSE FALSE FALSE
## [111,] FALSE FALSE TRUE FALSE FALSE
## [112,] FALSE FALSE FALSE FALSE FALSE
## [113,] FALSE FALSE FALSE FALSE FALSE
## [114,] TRUE FALSE FALSE FALSE FALSE
## [115,] FALSE FALSE FALSE FALSE FALSE
## [116,] FALSE FALSE FALSE FALSE FALSE
## [117,] FALSE TRUE FALSE FALSE FALSE
## [118,] FALSE FALSE FALSE FALSE FALSE
## [119,] TRUE FALSE FALSE FALSE FALSE
## [120,] TRUE FALSE FALSE FALSE FALSE
## [121,] FALSE FALSE TRUE FALSE FALSE
## [122,] FALSE FALSE FALSE FALSE FALSE
## [123,] FALSE FALSE FALSE FALSE FALSE
## [124,] FALSE FALSE FALSE FALSE FALSE
## [125,] FALSE FALSE FALSE FALSE FALSE
## [126,] FALSE FALSE FALSE FALSE FALSE
## [127,] FALSE FALSE FALSE FALSE FALSE
## [128,] FALSE TRUE FALSE FALSE FALSE
## [129,] FALSE FALSE TRUE FALSE FALSE
## [130,] FALSE FALSE FALSE FALSE FALSE
## [131,] FALSE FALSE FALSE FALSE FALSE
## [132,] FALSE FALSE FALSE FALSE FALSE
## [133,] FALSE TRUE FALSE FALSE FALSE
## [134,] FALSE FALSE FALSE FALSE FALSE
## [135,] FALSE FALSE FALSE TRUE FALSE
## [136,] FALSE FALSE TRUE FALSE FALSE
## [137,] FALSE FALSE FALSE FALSE FALSE
## [138,] TRUE FALSE FALSE FALSE FALSE
## [139,] FALSE FALSE FALSE FALSE FALSE
## [140,] FALSE FALSE FALSE FALSE FALSE
## [141,] FALSE TRUE FALSE FALSE FALSE
## [142,] FALSE TRUE FALSE FALSE FALSE
## [143,] FALSE FALSE FALSE FALSE FALSE
## [144,] FALSE FALSE FALSE FALSE FALSE
## [145,] FALSE FALSE FALSE FALSE FALSE
## [146,] FALSE FALSE FALSE FALSE FALSE
## [147,] FALSE FALSE FALSE FALSE FALSE
## [148,] FALSE FALSE FALSE FALSE FALSE
## [149,] FALSE FALSE TRUE FALSE FALSE
## [150,] FALSE FALSE FALSE TRUE FALSE
which(is.nan(dirty_iris$Sepal.Length))
## integer(0)
which(is.nan(dirty_iris$Sepal.Width))
## integer(0)
which(is.nan(dirty_iris$Petal.Length))
## integer(0)
which(is.nan(dirty_iris$Petal.Width))
## integer(0)
which(is.infinite(dirty_iris$Sepal.Length))
## integer(0)
which(is.infinite(dirty_iris$Sepal.Width))
## integer(0)
which(is.infinite(dirty_iris$Petal.Length))
## integer(0)
which(is.infinite(dirty_iris$Petal.Width))
## [1] 86
which(is.infinite(dirty_iris$Petal.Width) & dirty_iris < 0)
## integer(0)
dirty_iris[86,4]
## [1] Inf
There is a special value Inf in Petal Width, checked to see if it is
negative and it is not
dirty_iris[is.infinite(dirty_iris$Petal.Width), "Petal.Width"] = NA
dirty_iris[86,4]
## [1] NA
errors_recognized <- subset(dirty_iris, Sepal.Width <= 0 | Sepal.Length > 30)
errors_recognized
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 16 5.0 -3 3.5 1.0 versicolor
## 28 73.0 29 63.0 NA virginica
## 125 49.0 30 14.0 2.0 setosa
## 130 5.7 0 1.7 0.3 setosa
nrow(errors_recognized)
## [1] 4
sepal_width_errors <- dirty_iris[dirty_iris$Sepal.Width <= 0,]
sepal_width_errors
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## NA NA NA NA NA <NA>
## NA.1 NA NA NA NA <NA>
## 16 5.0 -3 3.5 1.0 versicolor
## NA.2 NA NA NA NA <NA>
## NA.3 NA NA NA NA <NA>
## NA.4 NA NA NA NA <NA>
## NA.5 NA NA NA NA <NA>
## NA.6 NA NA NA NA <NA>
## NA.7 NA NA NA NA <NA>
## NA.8 NA NA NA NA <NA>
## NA.9 NA NA NA NA <NA>
## NA.10 NA NA NA NA <NA>
## NA.11 NA NA NA NA <NA>
## NA.12 NA NA NA NA <NA>
## NA.13 NA NA NA NA <NA>
## 130 5.7 0 1.7 0.3 setosa
## NA.14 NA NA NA NA <NA>
## NA.15 NA NA NA NA <NA>
## NA.16 NA NA NA NA <NA>
abs(dirty_iris$Sepal.Width[dirty_iris$Sepal.Width < 0])
## [1] NA NA 3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
dirty_iris[16,2] <- abs(dirty_iris[16, 2])
dirty_iris$Sepal.Width[dirty_iris$Sepal.Width == 0] <- NA
mean(dirty_iris$Sepal.Width, na.rm = TRUE)
## [1] 3.462121
median(dirty_iris$Petal.Length, na.rm = TRUE)
## [1] 4.5
lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, data = dirty_iris)
##
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
## data = dirty_iris)
##
## Coefficients:
## (Intercept) Sepal.Width Petal.Length Petal.Width
## -0.3282 1.5127 0.1048 0.9860
kNN(dirty_iris, variable = "Petal.Width")
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 6.4 3.2 4.500 1.5 versicolor
## 2 6.3 3.3 6.000 2.5 virginica
## 3 6.2 NA 5.400 2.3 virginica
## 4 5.0 3.4 1.600 0.4 setosa
## 5 5.7 2.6 3.500 1.0 versicolor
## 6 5.3 NA NA 0.2 setosa
## 7 6.4 2.7 5.300 1.9 virginica
## 8 5.9 3.0 5.100 1.8 virginica
## 9 5.8 2.7 4.100 1.0 versicolor
## 10 4.8 3.1 1.600 0.2 setosa
## 11 5.0 3.5 1.600 0.6 setosa
## 12 6.0 2.7 5.100 1.6 versicolor
## 13 6.0 3.0 4.800 2.0 virginica
## 14 6.8 2.8 4.800 1.4 versicolor
## 15 NA 3.9 1.700 0.4 setosa
## 16 5.0 3.0 3.500 1.0 versicolor
## 17 5.5 NA 4.000 1.3 versicolor
## 18 4.7 3.2 1.300 0.2 setosa
## 19 NA 4.0 NA 0.2 setosa
## 20 5.6 NA 4.200 1.3 versicolor
## 21 4.9 3.6 NA 0.1 setosa
## 22 5.4 NA 4.500 1.5 versicolor
## 23 6.2 2.8 NA 1.8 virginica
## 24 6.7 3.3 5.700 2.5 virginica
## 25 NA 3.0 5.900 2.1 virginica
## 26 4.6 3.2 1.400 0.2 setosa
## 27 4.9 3.1 1.500 0.1 setosa
## 28 73.0 29.0 63.000 2.0 virginica
## 29 6.5 3.2 5.100 2.0 virginica
## 30 NA 2.8 0.820 1.3 versicolor
## 31 4.4 3.2 NA 0.2 setosa
## 32 5.9 3.2 4.800 1.5 versicolor
## 33 5.7 2.8 4.500 1.3 versicolor
## 34 6.2 2.9 NA 1.3 versicolor
## 35 6.6 2.9 23.000 1.3 versicolor
## 36 4.8 3.0 1.400 0.1 setosa
## 37 6.5 3.0 5.500 1.8 virginica
## 38 6.2 2.2 4.500 1.5 versicolor
## 39 6.7 2.5 5.800 1.8 virginica
## 40 5.0 3.0 1.600 0.2 setosa
## 41 5.0 NA 1.200 0.2 setosa
## 42 5.8 2.7 3.900 1.2 versicolor
## 43 0.0 NA 1.300 0.4 setosa
## 44 5.8 2.7 5.100 1.9 virginica
## 45 5.5 4.2 1.400 0.2 setosa
## 46 7.7 2.8 6.700 2.0 virginica
## 47 5.7 NA NA 0.4 setosa
## 48 7.0 3.2 4.700 1.4 versicolor
## 49 6.5 3.0 5.800 2.2 virginica
## 50 6.0 3.4 4.500 1.6 versicolor
## 51 5.5 2.6 4.400 1.2 versicolor
## 52 4.9 3.1 NA 0.2 setosa
## 53 5.2 2.7 3.900 1.4 versicolor
## 54 4.8 3.4 1.600 0.2 setosa
## 55 6.3 3.3 4.700 1.6 versicolor
## 56 7.7 3.8 6.700 2.2 virginica
## 57 5.1 3.8 1.500 0.3 setosa
## 58 NA 2.9 4.500 1.5 versicolor
## 59 6.4 2.8 5.600 1.8 virginica
## 60 6.4 2.8 5.600 2.1 virginica
## 61 5.0 2.3 3.300 1.1 versicolor
## 62 7.4 2.8 6.100 1.9 virginica
## 63 4.3 3.0 1.100 0.1 setosa
## 64 5.0 3.3 1.400 0.2 setosa
## 65 7.2 3.0 5.800 1.6 virginica
## 66 6.3 2.5 4.900 1.5 versicolor
## 67 5.1 2.5 NA 1.1 versicolor
## 68 NA 3.2 5.700 2.3 virginica
## 69 5.1 3.5 NA 0.2 setosa
## 70 5.0 3.5 1.300 0.3 setosa
## 71 6.1 3.0 4.600 1.4 versicolor
## 72 6.9 3.1 5.100 2.3 virginica
## 73 5.1 3.5 1.400 0.3 setosa
## 74 6.5 NA 4.600 1.5 versicolor
## 75 5.6 2.8 4.900 2.0 virginica
## 76 4.9 2.5 4.500 1.9 virginica
## 77 5.5 3.5 1.300 0.2 setosa
## 78 7.6 3.0 6.600 2.1 virginica
## 79 5.1 3.8 0.000 0.2 setosa
## 80 7.9 3.8 6.400 2.0 virginica
## 81 6.1 2.6 5.600 1.4 virginica
## 82 5.4 3.4 1.700 0.2 setosa
## 83 6.1 2.9 4.700 1.4 versicolor
## 84 5.4 3.7 1.500 0.2 setosa
## 85 6.7 3.0 5.200 2.3 virginica
## 86 5.1 3.8 1.900 0.2 setosa
## 87 6.4 2.9 4.300 1.3 versicolor
## 88 5.7 2.9 4.200 1.3 versicolor
## 89 4.4 2.9 1.400 0.2 setosa
## 90 6.3 2.5 5.000 1.9 virginica
## 91 7.2 3.2 6.000 1.8 virginica
## 92 4.9 NA 3.300 1.0 versicolor
## 93 5.2 3.4 1.400 0.2 setosa
## 94 5.8 2.7 5.100 1.9 virginica
## 95 6.0 2.2 5.000 1.5 virginica
## 96 6.9 3.1 NA 1.5 versicolor
## 97 5.5 2.3 4.000 1.3 versicolor
## 98 6.7 NA 5.000 1.7 versicolor
## 99 5.7 3.0 4.200 1.2 versicolor
## 100 6.3 2.8 5.100 1.5 virginica
## 101 5.4 3.4 1.500 0.4 setosa
## 102 7.2 3.6 NA 2.5 virginica
## 103 6.3 2.7 4.900 1.9 virginica
## 104 5.6 3.0 4.100 1.3 versicolor
## 105 5.1 3.7 NA 0.4 setosa
## 106 5.5 NA 0.925 1.0 versicolor
## 107 6.5 3.0 5.200 2.0 virginica
## 108 4.8 3.0 1.400 0.2 setosa
## 109 6.1 2.8 NA 1.3 versicolor
## 110 4.6 3.4 1.400 0.3 setosa
## 111 6.3 3.4 NA 2.4 virginica
## 112 5.0 3.4 1.500 0.2 setosa
## 113 5.1 3.4 1.500 0.2 setosa
## 114 NA 3.3 5.700 2.1 virginica
## 115 6.7 3.1 4.700 1.5 versicolor
## 116 7.7 2.6 6.900 2.3 virginica
## 117 6.3 NA 4.400 1.3 versicolor
## 118 4.6 3.1 1.500 0.2 setosa
## 119 NA 3.0 5.500 2.1 virginica
## 120 NA 2.8 4.700 1.2 versicolor
## 121 5.9 3.0 NA 1.5 versicolor
## 122 4.5 2.3 1.300 0.3 setosa
## 123 6.4 3.2 5.300 2.3 virginica
## 124 5.2 4.1 1.500 0.1 setosa
## 125 49.0 30.0 14.000 2.0 setosa
## 126 5.6 2.9 3.600 1.3 versicolor
## 127 6.8 3.2 5.900 2.3 virginica
## 128 5.8 NA 5.100 2.4 virginica
## 129 4.6 3.6 NA 0.2 setosa
## 130 5.7 NA 1.700 0.3 setosa
## 131 5.6 2.5 3.900 1.1 versicolor
## 132 6.7 3.1 4.400 1.4 versicolor
## 133 4.8 NA 1.900 0.2 setosa
## 134 5.1 3.3 1.700 0.5 setosa
## 135 4.4 3.0 1.300 0.2 setosa
## 136 7.7 3.0 NA 2.3 virginica
## 137 4.7 3.2 1.600 0.2 setosa
## 138 NA 3.0 4.900 1.8 virginica
## 139 6.9 3.1 5.400 2.1 virginica
## 140 6.0 2.2 4.000 1.0 versicolor
## 141 5.0 NA 1.400 0.2 setosa
## 142 5.5 NA 3.800 1.1 versicolor
## 143 6.6 3.0 4.400 1.4 versicolor
## 144 6.3 2.9 5.600 1.8 virginica
## 145 5.7 2.5 5.000 2.0 virginica
## 146 6.7 3.1 5.600 2.4 virginica
## 147 5.6 3.0 4.500 1.5 versicolor
## 148 5.2 3.5 1.500 0.2 setosa
## 149 6.4 3.1 NA 1.8 virginica
## 150 5.8 2.6 4.000 1.1 versicolor
## Petal.Width_imp
## 1 FALSE
## 2 FALSE
## 3 FALSE
## 4 FALSE
## 5 FALSE
## 6 FALSE
## 7 TRUE
## 8 FALSE
## 9 FALSE
## 10 FALSE
## 11 FALSE
## 12 FALSE
## 13 TRUE
## 14 FALSE
## 15 FALSE
## 16 FALSE
## 17 FALSE
## 18 FALSE
## 19 FALSE
## 20 FALSE
## 21 FALSE
## 22 FALSE
## 23 FALSE
## 24 FALSE
## 25 FALSE
## 26 FALSE
## 27 FALSE
## 28 TRUE
## 29 FALSE
## 30 FALSE
## 31 FALSE
## 32 TRUE
## 33 FALSE
## 34 FALSE
## 35 FALSE
## 36 FALSE
## 37 FALSE
## 38 FALSE
## 39 FALSE
## 40 FALSE
## 41 FALSE
## 42 FALSE
## 43 FALSE
## 44 FALSE
## 45 FALSE
## 46 FALSE
## 47 FALSE
## 48 FALSE
## 49 FALSE
## 50 FALSE
## 51 FALSE
## 52 FALSE
## 53 FALSE
## 54 FALSE
## 55 FALSE
## 56 FALSE
## 57 FALSE
## 58 FALSE
## 59 TRUE
## 60 FALSE
## 61 TRUE
## 62 FALSE
## 63 FALSE
## 64 FALSE
## 65 FALSE
## 66 FALSE
## 67 FALSE
## 68 FALSE
## 69 TRUE
## 70 FALSE
## 71 FALSE
## 72 FALSE
## 73 FALSE
## 74 FALSE
## 75 FALSE
## 76 TRUE
## 77 FALSE
## 78 FALSE
## 79 FALSE
## 80 FALSE
## 81 FALSE
## 82 FALSE
## 83 FALSE
## 84 FALSE
## 85 FALSE
## 86 TRUE
## 87 FALSE
## 88 FALSE
## 89 FALSE
## 90 FALSE
## 91 FALSE
## 92 FALSE
## 93 FALSE
## 94 FALSE
## 95 FALSE
## 96 FALSE
## 97 FALSE
## 98 FALSE
## 99 FALSE
## 100 FALSE
## 101 FALSE
## 102 FALSE
## 103 TRUE
## 104 FALSE
## 105 FALSE
## 106 FALSE
## 107 FALSE
## 108 TRUE
## 109 FALSE
## 110 FALSE
## 111 FALSE
## 112 FALSE
## 113 FALSE
## 114 FALSE
## 115 FALSE
## 116 FALSE
## 117 FALSE
## 118 FALSE
## 119 FALSE
## 120 FALSE
## 121 FALSE
## 122 FALSE
## 123 FALSE
## 124 FALSE
## 125 FALSE
## 126 FALSE
## 127 FALSE
## 128 FALSE
## 129 FALSE
## 130 FALSE
## 131 FALSE
## 132 FALSE
## 133 FALSE
## 134 FALSE
## 135 TRUE
## 136 FALSE
## 137 FALSE
## 138 FALSE
## 139 FALSE
## 140 FALSE
## 141 FALSE
## 142 FALSE
## 143 FALSE
## 144 FALSE
## 145 FALSE
## 146 FALSE
## 147 FALSE
## 148 FALSE
## 149 FALSE
## 150 TRUE