library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
install.packages("dplyr")
## Warning: package 'dplyr' is in use and will not be installed
library(dplyr)
q1 <- flights %>%
filter(origin == "LGA", dest == "XNA") %>%
left_join(airlines, by = "carrier") %>% # Join with airlines to get airline names
select(year, month, day, carrier, name, flight, tailnum, dep_time, arr_time)
print(q1)
## # A tibble: 745 × 9
## year month day carrier name flight tailnum dep_time arr_time
## <int> <int> <int> <chr> <chr> <int> <chr> <int> <int>
## 1 2013 1 1 MQ Envoy Air 4534 N722MQ 656 1007
## 2 2013 1 1 MQ Envoy Air 4525 N719MQ 1525 1934
## 3 2013 1 1 MQ Envoy Air 4413 N739MQ 1740 2158
## 4 2013 1 2 MQ Envoy Air 4534 N719MQ 656 1014
## 5 2013 1 2 MQ Envoy Air 4525 N711MQ 1531 1846
## 6 2013 1 2 MQ Envoy Air 4413 N723MQ 1740 2035
## 7 2013 1 3 MQ Envoy Air 4534 N711MQ 703 1014
## 8 2013 1 3 MQ Envoy Air 4525 N730MQ 1525 1802
## 9 2013 1 3 MQ Envoy Air 4413 N722MQ 1737 1953
## 10 2013 1 4 MQ Envoy Air 4534 N719MQ 701 934
## # ℹ 735 more rows
q2 <- flights %>%
left_join(airlines, by = "carrier")
print(q2)
## # A tibble: 336,776 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 336,766 more rows
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
#Step One: Collect all data
q3_with_flights <- flights %>%
select(origin, dest) %>%
distinct() %>%
rename(flight_airport = origin) %>%
bind_rows(rename(flights, flight_airport = dest) %>% select(flight_airport)) %>%
distinct()
#Step Two: Identify Airports without flights
q3_no_flights <- airports %>%
anti_join(q3_with_flights, by = c("faa" = "flight_airport")) %>%
select(faa, name, lat, lon, tz, alt)
print(q3_no_flights)
## # A tibble: 1,355 × 6
## faa name lat lon tz alt
## <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 04G Lansdowne Airport 41.1 -80.6 -5 1044
## 2 06A Moton Field Municipal Airport 32.5 -85.7 -6 264
## 3 06C Schaumburg Regional 42.0 -88.1 -6 801
## 4 06N Randall Airport 41.4 -74.4 -5 523
## 5 09J Jekyll Island Airport 31.1 -81.4 -5 11
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2 -5 1593
## 7 0G6 Williams County Airport 41.5 -84.5 -5 730
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8 -5 492
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6 -5 1000
## 10 0S9 Jefferson County Intl 48.1 -123. -8 108
## # ℹ 1,345 more rows
#Step one: Filter Data
high_wind_weather <- weather %>%
filter(wind_speed > 30)
#Step two: Join High Wind Data with Airports
q4 <- high_wind_weather %>%
select(origin) %>%
distinct() %>%
left_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
print(q4)
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia