Load the Datasets

library(nycflights13)
library(tidyverse)

Question One

q1 <- flights %>%
  filter(origin == "LGA", dest == "XNA") %>%
  left_join(planes, by = "tailnum")
print(head(q1))
## # A tibble: 6 × 27
##   year.x month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1   2013     1     1      656            705        -9     1007            940
## 2   2013     1     1     1525           1530        -5     1934           1805
## 3   2013     1     1     1740           1745        -5     2158           2020
## 4   2013     1     2      656            705        -9     1014            940
## 5   2013     1     2     1531           1530         1     1846           1805
## 6   2013     1     2     1740           1745        -5     2035           2020
## # ℹ 19 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, year.y <int>, type <chr>,
## #   manufacturer <chr>, model <chr>, engines <int>, seats <int>, speed <int>,
## #   engine <chr>

Question Two

q2 <- flights %>%
  left_join(airlines %>% 
    select(carrier, name), by = "carrier")
print(head(q2))
## # A tibble: 6 × 20
##    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
## 1  2013     1     1      517            515         2      830            819
## 2  2013     1     1      533            529         4      850            830
## 3  2013     1     1      542            540         2      923            850
## 4  2013     1     1      544            545        -1     1004           1022
## 5  2013     1     1      554            600        -6      812            837
## 6  2013     1     1      554            558        -4      740            728
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>

Question Three

q3a <- airports %>%
  anti_join(flights, by = c("faa" = "origin")) %>%
  distinct(name)

q3b <- airports %>%
  anti_join(flights, by = c("faa" = "dest")) %>%
  distinct(name)

q3 <- q3a %>%
  intersect(q3b)

print(head(q3))
## # A tibble: 6 × 1
##   name                          
##   <chr>                         
## 1 Lansdowne Airport             
## 2 Moton Field Municipal Airport 
## 3 Schaumburg Regional           
## 4 Randall Airport               
## 5 Jekyll Island Airport         
## 6 Elizabethton Municipal Airport

*

Question Four

qWeather <- weather %>%
  filter(wind_speed > 30) %>%
  select(origin) %>%
  distinct()

q4 <- qWeather %>%
  inner_join(airports, by = c("origin" = "faa")) %>%
  select(name) %>%
  distinct()

print(q4)
## # A tibble: 3 × 1
##   name               
##   <chr>              
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia