library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
View(flights) View(airlines) View(weather) View(planes) View(airports)
planes_lga_xna <- flights %>%
filter(origin == "LGA" & dest == "XNA") %>%
select(tailnum) %>%
distinct()
planes_lga_xna
## # A tibble: 70 × 1
## tailnum
## <chr>
## 1 N722MQ
## 2 N719MQ
## 3 N739MQ
## 4 N711MQ
## 5 N723MQ
## 6 N730MQ
## 7 N734MQ
## 8 N725MQ
## 9 N736MQ
## 10 N737MQ
## # ℹ 60 more rows
flights_with_airline <- flights %>%
left_join(airlines, by = "carrier")
flights_with_airline %>%
select(carrier, name, everything()) # Displaying with airline name
## # A tibble: 336,776 × 20
## carrier name year month day dep_time sched_dep_time dep_delay arr_time
## <chr> <chr> <int> <int> <int> <int> <int> <dbl> <int>
## 1 UA United … 2013 1 1 517 515 2 830
## 2 UA United … 2013 1 1 533 529 4 850
## 3 AA America… 2013 1 1 542 540 2 923
## 4 B6 JetBlue… 2013 1 1 544 545 -1 1004
## 5 DL Delta A… 2013 1 1 554 600 -6 812
## 6 UA United … 2013 1 1 554 558 -4 740
## 7 B6 JetBlue… 2013 1 1 555 600 -5 913
## 8 EV Express… 2013 1 1 557 600 -3 709
## 9 B6 JetBlue… 2013 1 1 557 600 -3 838
## 10 AA America… 2013 1 1 558 600 -2 753
## # ℹ 336,766 more rows
## # ℹ 11 more variables: sched_arr_time <int>, arr_delay <dbl>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
airports_no_flights <- airports %>%
anti_join(flights, by = c("faa" = "origin")) %>%
anti_join(flights, by = c("faa" = "dest")) %>%
select(faa, name) %>%
distinct()
airports_no_flights
## # A tibble: 1,355 × 2
## faa name
## <chr> <chr>
## 1 04G Lansdowne Airport
## 2 06A Moton Field Municipal Airport
## 3 06C Schaumburg Regional
## 4 06N Randall Airport
## 5 09J Jekyll Island Airport
## 6 0A9 Elizabethton Municipal Airport
## 7 0G6 Williams County Airport
## 8 0G7 Finger Lakes Regional Airport
## 9 0P2 Shoestring Aviation Airfield
## 10 0S9 Jefferson County Intl
## # ℹ 1,345 more rows
windy_airports <- weather %>%
filter(wind_speed > 30) %>%
inner_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
windy_airports
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia