1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
lga_to_xna_flights <- flights %>%
filter(origin == "LGA", dest == "XNA") %>%
left_join(planes, by = "tailnum")
2. join - Add the airline name to the flights table (1 POINT)
flights_with_airlines <- flights %>%
left_join(airlines, by = "carrier")
3. join + select + distinct() - Which airports have no commercial flights (1 POINT)
flights_airports <- flights %>%
select(origin, dest) %>%
distinct() %>%
pivot_longer(cols = c(origin, dest), values_to = "faa") %>%
distinct(faa)
airports_with_no_flights <- airports %>%
anti_join(flights_airports, by = "faa")
airports_with_no_flights %>%
select(faa, name, lat, lon)
## # A tibble: 1,355 × 4
## faa name lat lon
## <chr> <chr> <dbl> <dbl>
## 1 04G Lansdowne Airport 41.1 -80.6
## 2 06A Moton Field Municipal Airport 32.5 -85.7
## 3 06C Schaumburg Regional 42.0 -88.1
## 4 06N Randall Airport 41.4 -74.4
## 5 09J Jekyll Island Airport 31.1 -81.4
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2
## 7 0G6 Williams County Airport 41.5 -84.5
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6
## 10 0S9 Jefferson County Intl 48.1 -123.
## # ℹ 1,345 more rows
4. EXTRA CREDIT - (2 POINT2) - NO HELP - NO PARTIAL CREDIT: Create a table with the names of the airports with the most winds (wind_speed > 30). The table must contain only the airport name (airports$name) and no duplicate rows
high_wind_airports <- weather %>%
filter(wind_speed > 30) %>%
left_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
head(high_wind_airports)
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia