library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(dplyr)
1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
flights_filtered <- flights %>%
filter(origin == "LGA", dest == "XNA")
planes_filtered <- flights_filtered %>%
select(flight, origin, dest)
head(planes_filtered)
## # A tibble: 6 × 3
## flight origin dest
## <int> <chr> <chr>
## 1 4534 LGA XNA
## 2 4525 LGA XNA
## 3 4413 LGA XNA
## 4 4534 LGA XNA
## 5 4525 LGA XNA
## 6 4413 LGA XNA
2. join - Add the airline name to the flights table (1 POINT)
flights2 <- right_join(airlines, flights, by = "carrier")
head(flights2)
## # A tibble: 6 × 20
## carrier name year month day dep_time sched_dep_time dep_delay arr_time
## <chr> <chr> <int> <int> <int> <int> <int> <dbl> <int>
## 1 9E Endeavor… 2013 1 1 810 810 0 1048
## 2 9E Endeavor… 2013 1 1 1451 1500 -9 1634
## 3 9E Endeavor… 2013 1 1 1452 1455 -3 1637
## 4 9E Endeavor… 2013 1 1 1454 1500 -6 1635
## 5 9E Endeavor… 2013 1 1 1507 1515 -8 1651
## 6 9E Endeavor… 2013 1 1 1530 1530 0 1650
## # ℹ 11 more variables: sched_arr_time <int>, arr_delay <dbl>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
3. join + select + distinct() - Which airports have no commercial
flights (1 POINT)
no_commercial <- airports%>%
anti_join(flights, by = c("faa" = "dest")) %>%
select(name) %>%
distinct()
head(no_commercial)
## # A tibble: 6 × 1
## name
## <chr>
## 1 Lansdowne Airport
## 2 Moton Field Municipal Airport
## 3 Schaumburg Regional
## 4 Randall Airport
## 5 Jekyll Island Airport
## 6 Elizabethton Municipal Airport
4. EXTRA CREDIT - (2 POINT2) - NO HELP - NO PARTIAL CREDIT. Create a
table with the names of the airports with the most winds (wind_speed
> 30). The table must contain only the airport name (airports$name)
and no duplicate rows.
wind_speed <- weather %>%
filter(wind_speed > 30) %>%
inner_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
head(wind_speed)
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia