library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#Question 1
# Create the code makes a table for each of the below questions.
# 1. join + filter - Which airplanes fly LGA to XNA (1 POINT)
flights_lga_xna <- flights %>%
filter(origin == "LGA", dest == "XNA")
flights_with_planes <- flights_lga_xna %>%
left_join(planes, by = "tailnum")
flights_with_planes %>%
select(month, day, tailnum, model, manufacturer)
## # A tibble: 745 × 5
## month day tailnum model manufacturer
## <int> <int> <chr> <chr> <chr>
## 1 1 1 N722MQ <NA> <NA>
## 2 1 1 N719MQ <NA> <NA>
## 3 1 1 N739MQ <NA> <NA>
## 4 1 2 N719MQ <NA> <NA>
## 5 1 2 N711MQ G1159B GULFSTREAM AEROSPACE
## 6 1 2 N723MQ <NA> <NA>
## 7 1 3 N711MQ G1159B GULFSTREAM AEROSPACE
## 8 1 3 N730MQ <NA> <NA>
## 9 1 3 N722MQ <NA> <NA>
## 10 1 4 N719MQ <NA> <NA>
## # ℹ 735 more rows
head(flights_lga_xna)
## # A tibble: 6 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 656 705 -9 1007 940
## 2 2013 1 1 1525 1530 -5 1934 1805
## 3 2013 1 1 1740 1745 -5 2158 2020
## 4 2013 1 2 656 705 -9 1014 940
## 5 2013 1 2 1531 1530 1 1846 1805
## 6 2013 1 2 1740 1745 -5 2035 2020
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
#Question 2
# 2. join - Add the airline name to the flights table (1 POINT)
flights_with_airlines <- flights %>%
left_join(airlines, by = "carrier")
flights_with_airlines %>%
select(year, month, day, carrier, name, tailnum, origin, dest)
## # A tibble: 336,776 × 8
## year month day carrier name tailnum origin dest
## <int> <int> <int> <chr> <chr> <chr> <chr> <chr>
## 1 2013 1 1 UA United Air Lines Inc. N14228 EWR IAH
## 2 2013 1 1 UA United Air Lines Inc. N24211 LGA IAH
## 3 2013 1 1 AA American Airlines Inc. N619AA JFK MIA
## 4 2013 1 1 B6 JetBlue Airways N804JB JFK BQN
## 5 2013 1 1 DL Delta Air Lines Inc. N668DN LGA ATL
## 6 2013 1 1 UA United Air Lines Inc. N39463 EWR ORD
## 7 2013 1 1 B6 JetBlue Airways N516JB EWR FLL
## 8 2013 1 1 EV ExpressJet Airlines Inc. N829AS LGA IAD
## 9 2013 1 1 B6 JetBlue Airways N593JB JFK MCO
## 10 2013 1 1 AA American Airlines Inc. N3ALAA LGA ORD
## # ℹ 336,766 more rows
#Question 3
# 3. join + select + distinct() - Which airports have no commercial flights (1 POINT)
airports_with_flights <- flights %>%
select(origin, dest) %>%
distinct()
airports_no_flights <- airports %>%
anti_join(airports_with_flights, by = c("faa" = "origin")) %>%
anti_join(airports_with_flights, by = c("faa" = "dest"))
airports_no_flights %>%
select(faa, name, lat, lon)
## # A tibble: 1,355 × 4
## faa name lat lon
## <chr> <chr> <dbl> <dbl>
## 1 04G Lansdowne Airport 41.1 -80.6
## 2 06A Moton Field Municipal Airport 32.5 -85.7
## 3 06C Schaumburg Regional 42.0 -88.1
## 4 06N Randall Airport 41.4 -74.4
## 5 09J Jekyll Island Airport 31.1 -81.4
## 6 0A9 Elizabethton Municipal Airport 36.4 -82.2
## 7 0G6 Williams County Airport 41.5 -84.5
## 8 0G7 Finger Lakes Regional Airport 42.9 -76.8
## 9 0P2 Shoestring Aviation Airfield 39.8 -76.6
## 10 0S9 Jefferson County Intl 48.1 -123.
## # ℹ 1,345 more rows
#Question 4
# 4. EXTRA CREDIT - (2 POINT2) - NO HELP - NO PARTIAL CREDIT
# Create a table with the names of the airports with the most
# winds (wind_speed > 30). The table must contain only the airport
# name (airports$name) and no duplicate rows
airports_high_winds <- weather %>%
filter(wind_speed > 30) %>%
distinct(origin) %>%
inner_join(airports, by = c("origin" = "faa")) %>%
select(name) %>%
distinct()
airports_high_winds
## # A tibble: 3 × 1
## name
## <chr>
## 1 Newark Liberty Intl
## 2 John F Kennedy Intl
## 3 La Guardia