# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x= symbols,
get ="stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select= adjusted,
mutate_fun= periodReturn,
period= "monthly",
type= "log") %>%
slice(-1) %>%
ungroup()
set_names(c("asset", "date", "returns"))
## asset date returns
## "asset" "date" "returns"
# symbols
symbols <- asset_returns_tbl %>% distinct(symbol) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
#weights
weights <- c(0.25,0.25,0.2,0.2,0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols,weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = symbol,
returns_col = monthly.returns,
weights = w_tbl,
replace_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00220
## 3 2013-03-28 0.0127
## 4 2013-04-30 0.0173
## 5 2013-05-31 -0.0113
## 6 2013-06-28 -0.0233
## 7 2013-07-31 0.0342
## 8 2013-08-30 -0.0231
## 9 2013-09-30 0.0513
## 10 2013-10-31 0.0305
## # ℹ 50 more rows
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = date, y = portfolio.returns)) +
geom_point(color= "cornflowerblue") +
#Formatting
scale_x_date(date_breaks = "1 year",
date_labels = "%Y") +
#Labeling
labs(y = "monthly returns",
x = NULL,
title = "Portfolio Returns Scatter Plot")
#Histogram
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.005)
labs(x = "returns",
title = "Portfolio Returns Distribution")
## $x
## [1] "returns"
##
## $title
## [1] "Portfolio Returns Distribution"
##
## attr(,"class")
## [1] "labels"
#Portfolio History and Density
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01) +
geom_density() +
# Formatting
scale_x_continuous(labels = scales:: percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio History & Density")
What return should you expect from the portfolio in a typical quarter?
Typically returns are 1% growth every quarter. With it happening 15 times we can only expect that has the best chance however anywhere from 0-2.5% happens the average and could see it falling in that range.