Demographics Stuff

Plots

Bayes

Do mass and count superordinate nouns behave similarly across contexts that emphasize individual objects vs functionality?

We only look at English participants for this question.

Base model: Function response ~ 1 + (1|Participant) + (1|Item)

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ 1 + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_en_goals (Number of observations: 1680) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 140) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.43      0.40     2.74     4.30 1.00      767     1291
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.76      0.44     1.12     2.81 1.00      814     1441
## 
## Regression Coefficients:
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -3.78      0.66    -5.11    -2.53 1.01      464     1042
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

This following model is not preregistered.

Function response ~ Syntax + (1|Participant) + (1|Item)

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ 1 + eng_syntax + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_en_goals (Number of observations: 1680) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 140) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.40      0.40     2.72     4.25 1.00      783     1592
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.83      0.48     1.12     3.01 1.00     1338     1816
## 
## Regression Coefficients:
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept         -3.83      0.89    -5.70    -2.11 1.01      786     1336
## eng_syntaxmass     0.14      1.09    -2.06     2.26 1.00      881     1610
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  model term df1 df2 F.ratio Chisq p.value
##  eng_syntax   1 Inf   0.016 0.016  0.8999
## Sampling priors, please wait...
## Bayes Factor (Savage-Dickey density ratio)
## 
## Parameter      |     BF
## -----------------------
## (Intercept)    | 212.63
## eng_syntaxmass |  0.103
## 
## * Evidence Against The Null: 0
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                   BF
## [1] 1 + eng_syntax + (1 | subject_id) + (1 | trial_item) 0.084
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)

Function response ~ Context + Syntax + (1|Participant) + (1|Item)

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ 1 + context + eng_syntax + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_en_goals (Number of observations: 1680) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 140) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.38      0.38     2.69     4.23 1.00      830     1360
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.84      0.48     1.15     3.01 1.00     1100     1810
## 
## Regression Coefficients:
##                   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept            -3.23      0.93    -5.08    -1.36 1.00      649     1354
## contextindividual    -1.31      0.64    -2.56    -0.05 1.01      555     1054
## eng_syntaxmass        0.18      1.13    -2.14     2.45 1.00      759     1400
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Sampling priors, please wait...
## Bayes Factor (Savage-Dickey density ratio)
## 
## Parameter         |    BF
## -------------------------
## (Intercept)       | 13.32
## contextindividual | 0.574
## eng_syntaxmass    | 0.111
## 
## * Evidence Against The Null: 0
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                             BF
## [1] 1 + context + eng_syntax + (1 | subject_id) + (1 | trial_item) 0.033
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)

Function response ~ Context * Syntax + (1|Participant) + (1|Item)

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ context * eng_syntax + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_en_goals (Number of observations: 1680) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 140) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.42      0.41     2.68     4.31 1.00      876     1696
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.90      0.51     1.17     3.13 1.01     1202     1806
## 
## Regression Coefficients:
##                                  Estimate Est.Error l-95% CI u-95% CI Rhat
## Intercept                           -3.37      1.00    -5.33    -1.41 1.00
## contextindividual                   -1.04      0.72    -2.48     0.33 1.01
## eng_syntaxmass                       0.44      1.22    -1.94     2.84 1.00
## contextindividual:eng_syntaxmass    -0.53      0.38    -1.30     0.21 1.00
##                                  Bulk_ESS Tail_ESS
## Intercept                             819     1117
## contextindividual                     600     1378
## eng_syntaxmass                        703     1055
## contextindividual:eng_syntaxmass     4572     2869
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  model term         df1 df2 F.ratio Chisq p.value
##  context              1 Inf   3.539 3.539  0.0599
##  eng_syntax           1 Inf   0.021 0.021  0.8837
##  context:eng_syntax   1 Inf   1.901 1.901  0.1680
## Sampling priors, please wait...
## Bayes Factor (Savage-Dickey density ratio)
## 
## Parameter                        |    BF
## ----------------------------------------
## (Intercept)                      | 11.29
## contextindividual                | 0.214
## eng_syntaxmass                   | 0.116
## contextindividual:eng_syntaxmass | 0.098
## 
## * Evidence Against The Null: 0
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                         BF
## [1] context * eng_syntax + (1 | subject_id) + (1 | trial_item) 0.004
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)

This set of models suggest that there may be a small effect of context, but the best model is still the base model that contains no predictors.

Do English and French speakers use different quantificational bases when making comparisons for superordinate nouns that differ in syntactic status across the two languages?

For this, we only look at nouns that are mass in English and count in French (e.g., furniture). In these models, Language is a proxy for Syntax.

Base model: Function response ~ 1 + (1|Participant) + (1|Item)

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ 1 + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals %>% filter(eng_syntax == "mass") (Number of observations: 1680) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.74      0.26     2.26     3.29 1.00     1330     2373
## 
## ~trial_item (Number of levels: 6) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.95      0.76     0.99     3.98 1.00     1297     1667
## 
## Regression Coefficients:
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -2.79      0.86    -4.41    -0.95 1.00      934     1585
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Function response ~ Language + (1|Participant) + (1|Item)

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ lang + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals %>% filter(eng_syntax == "mass") (Number of observations: 1680) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.76      0.26     2.29     3.32 1.00     1258     2312
## 
## ~trial_item (Number of levels: 6) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.91      0.74     1.01     3.64 1.00     1772     1538
## 
## Regression Coefficients:
##            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     -3.06      0.86    -4.73    -1.27 1.00     1460     1775
## langfrench     0.43      0.40    -0.35     1.25 1.00     1540     1986
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                         BF
## [1] lang + (1 | subject_id) + (1 | trial_item) 0.946
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)

This following model is not preregistered.

Function response ~ Language + Context + (1|Participant) + (1|Item)

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ lang + context + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals %>% filter(eng_syntax == "mass") (Number of observations: 1680) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.58      0.25     2.11     3.10 1.00     1438     2477
## 
## ~trial_item (Number of levels: 6) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.91      0.72     0.99     3.64 1.00     1619     2021
## 
## Regression Coefficients:
##                   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept            -2.14      0.87    -3.84    -0.34 1.00     1408     1921
## langfrench            0.42      0.38    -0.34     1.17 1.00     1842     2446
## contextindividual    -1.75      0.40    -2.54    -1.00 1.00     1625     2299
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  model term   df1 df2 F.ratio  Chisq p.value
##  lang           1 Inf   1.171  1.171  0.2792
##  context        1 Inf  19.289 19.289  <.0001
##  (confounded)   1 Inf   0.000 20.400  1.0000
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                      BF
## [1] lang + context + (1 | subject_id) + (1 | trial_item) 1.96e+04
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)

Function response ~ Language * Context + (1|Participant) + (1|Item)

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ lang * context + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals %>% filter(eng_syntax == "mass") (Number of observations: 1680) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.58      0.25     2.12     3.10 1.00     1091     1971
## 
## ~trial_item (Number of levels: 6) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.92      0.72     1.01     3.74 1.00     1722     2082
## 
## Regression Coefficients:
##                              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                       -2.34      0.88    -4.03    -0.52 1.00     1184
## langfrench                       0.79      0.52    -0.20     1.82 1.00     1139
## contextindividual               -1.34      0.55    -2.47    -0.29 1.01     1148
## langfrench:contextindividual    -0.84      0.77    -2.39     0.60 1.00     1159
##                              Tail_ESS
## Intercept                        1604
## langfrench                       1690
## contextindividual                1982
## langfrench:contextindividual     1820
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  model term   df1 df2 F.ratio  Chisq p.value
##  lang           1 Inf   0.861  0.861  0.3535
##  context        1 Inf  19.775 19.775  <.0001
##  lang:context   1 Inf   1.193  1.193  0.2747
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                   BF
## [1] lang * context + (1 | subject_id) + (1 | trial_item) 0.028
## 
## * Against Denominator: [2] lang + context + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)

This set of models suggest that there is no effect of language (for these nouns, a proxy for syntax). But there is a main effect of context.

Now I’m just checking the fit of the lang + context model…

Exploratory from here…

Including all the data.

##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ 1 + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals (Number of observations: 3360) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.13      0.24     2.68     3.63 1.00      843     1603
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.82      0.44     1.17     2.89 1.00      799     1512
## 
## Regression Coefficients:
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept    -3.34      0.61    -4.49    -2.10 1.00      665      977
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Sampling priors, please wait...
## Bayes Factor (Savage-Dickey density ratio)
## 
## Parameter   |     BF
## --------------------
## (Intercept) | 731.92
## 
## * Evidence Against The Null: 0
##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ 1 + lang + eng_syntax + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals (Number of observations: 3360) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.13      0.25     2.69     3.64 1.00      923     1690
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.92      0.49     1.21     3.08 1.00     1860     2599
## 
## Regression Coefficients:
##                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept         -3.68      0.88    -5.47    -1.90 1.00     1512     2226
## langfrench         0.58      0.43    -0.27     1.44 1.00      825     1697
## eng_syntaxmass     0.11      1.13    -2.17     2.29 1.00     1387     2139
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Sampling priors, please wait...
## Bayes Factor (Savage-Dickey density ratio)
## 
## Parameter      |    BF
## ----------------------
## (Intercept)    | 54.32
## langfrench     | 0.114
## eng_syntaxmass | 0.106
## 
## * Evidence Against The Null: 0
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                          BF
## [1] 1 + lang + eng_syntax + (1 | subject_id) + (1 | trial_item) 0.126
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)
##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ 1 + lang + context + eng_syntax + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals (Number of observations: 3360) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.98      0.23     2.56     3.46 1.01      898     2109
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.92      0.50     1.21     3.09 1.00      920     1332
## 
## Regression Coefficients:
##                   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept            -2.76      0.90    -4.55    -0.96 1.00      763     1274
## langfrench            0.57      0.41    -0.22     1.40 1.01      600      973
## contextindividual    -1.80      0.42    -2.66    -0.99 1.01      576     1207
## eng_syntaxmass        0.14      1.16    -2.09     2.49 1.00      746     1174
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Sampling priors, please wait...
## Bayes Factor (Savage-Dickey density ratio)
## 
## Parameter         |    BF
## -------------------------
## (Intercept)       |  7.68
## langfrench        | 0.101
## contextindividual | 67.26
## eng_syntaxmass    | 0.103
## 
## * Evidence Against The Null: 0
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                                    BF
## [1] 1 + lang + context + eng_syntax + (1 | subject_id) + (1 | trial_item) 0.215
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)
##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ 1 + lang * eng_syntax + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals (Number of observations: 3360) 
##   Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup draws = 4000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.13      0.24     2.69     3.66 1.00      948     1748
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.91      0.48     1.21     3.06 1.00     1564     2320
## 
## Regression Coefficients:
##                           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept                    -3.78      0.88    -5.54    -2.06 1.00     1543
## langfrench                    0.70      0.45    -0.19     1.59 1.01      939
## eng_syntaxmass                0.21      1.16    -2.11     2.54 1.00     1570
## langfrench:eng_syntaxmass    -0.20      0.25    -0.70     0.29 1.01    10094
##                           Tail_ESS
## Intercept                     1684
## langfrench                    2023
## eng_syntaxmass                1888
## langfrench:eng_syntaxmass     2099
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  model term      df1 df2 F.ratio Chisq p.value
##  lang              1 Inf   1.971 1.971  0.1603
##  eng_syntax        1 Inf   0.009 0.009  0.9226
##  lang:eng_syntax   1 Inf   0.606 0.606  0.4363
## Sampling priors, please wait...
## Bayes Factor (Savage-Dickey density ratio)
## 
## Parameter                 |    BF
## ---------------------------------
## (Intercept)               | 98.18
## langfrench                | 0.152
## eng_syntaxmass            | 0.115
## langfrench:eng_syntaxmass | 0.032
## 
## * Evidence Against The Null: 0
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                             BF
## [1] 1 + lang * eng_syntax + (1 | subject_id) + (1 | trial_item) 5.58e-04
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)
##  Family: bernoulli 
##   Links: mu = logit 
## Formula: func_response ~ lang * context * eng_syntax + (1 | subject_id) + (1 | trial_item) 
##    Data: df.trial_goals (Number of observations: 3360) 
##   Draws: 4 chains, each with iter = 6000; warmup = 3000; thin = 1;
##          total post-warmup draws = 12000
## 
## Multilevel Hyperparameters:
## ~subject_id (Number of levels: 280) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.98      0.24     2.56     3.48 1.00     3515     6212
## 
## ~trial_item (Number of levels: 12) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.91      0.48     1.22     3.06 1.00     4362     5791
## 
## Regression Coefficients:
##                                             Estimate Est.Error l-95% CI
## Intercept                                      -3.25      0.91    -5.08
## langfrench                                      1.33      0.58     0.18
## contextindividual                              -0.94      0.63    -2.20
## eng_syntaxmass                                  0.47      1.16    -1.83
## langfrench:contextindividual                   -1.46      0.88    -3.20
## langfrench:eng_syntaxmass                      -0.45      0.33    -1.10
## contextindividual:eng_syntaxmass               -0.51      0.38    -1.24
## langfrench:contextindividual:eng_syntaxmass     0.60      0.52    -0.42
##                                             u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept                                      -1.45 1.00     3343     5225
## langfrench                                      2.49 1.00     2183     4512
## contextindividual                               0.28 1.00     2547     5053
## eng_syntaxmass                                  2.79 1.00     3900     4834
## langfrench:contextindividual                    0.28 1.00     2483     4791
## langfrench:eng_syntaxmass                       0.21 1.00    13772     9963
## contextindividual:eng_syntaxmass                0.24 1.00    12664     9993
## langfrench:contextindividual:eng_syntaxmass     1.61 1.00    11474     9670
## 
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  model term              df1 df2 F.ratio  Chisq p.value
##  lang                      1 Inf   1.644  1.644  0.1998
##  context                   1 Inf  18.007 18.007  <.0001
##  eng_syntax                1 Inf   0.016  0.016  0.8995
##  lang:context              1 Inf   1.892  1.892  0.1690
##  lang:eng_syntax           1 Inf   0.315  0.315  0.5747
##  context:eng_syntax        1 Inf   0.594  0.594  0.4410
##  lang:context:eng_syntax   1 Inf   1.329  1.329  0.2489
## Sampling priors, please wait...
## Bayes Factor (Savage-Dickey density ratio)
## 
## Parameter                                   |    BF
## ---------------------------------------------------
## (Intercept)                                 | 24.05
## langfrench                                  | 0.708
## contextindividual                           | 0.195
## eng_syntaxmass                              | 0.123
## langfrench:contextindividual                | 0.353
## langfrench:eng_syntaxmass                   | 0.082
## contextindividual:eng_syntaxmass            | 0.091
## langfrench:contextindividual:eng_syntaxmass | 0.104
## 
## * Evidence Against The Null: 0
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Computation of Marginal Likelihood: estimating marginal likelihood,
##   please wait...
## Bayes Factors for Model Comparison
## 
##     Model                                                                   BF
## [1] lang * context * eng_syntax + (1 | subject_id) + (1 | trial_item) 3.62e-05
## 
## * Against Denominator: [2] 1 + (1 | subject_id) + (1 | trial_item)
## *   Bayes Factor Type: marginal likelihoods (bridgesampling)
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Estimated Bayes factor in favor of fit.lang_context_int over fit.lang_context: 0.00001
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Iteration: 24
## Iteration: 25
## Iteration: 26
## Iteration: 27
## Iteration: 28
## Iteration: 29
## Iteration: 30
## Iteration: 31
## Iteration: 32
## Iteration: 33
## Iteration: 34
## Iteration: 35
## Iteration: 36
## Iteration: 37
## Iteration: 38
## Iteration: 39
## Iteration: 40
## Iteration: 41
## Iteration: 42
## Iteration: 43
## Iteration: 44
## Iteration: 45
## Iteration: 46
## Iteration: 47
## Iteration: 48
## Iteration: 49
## Iteration: 50
## Iteration: 51
## Iteration: 52
## Iteration: 53
## Iteration: 54
## Iteration: 55
## Iteration: 56
## Iteration: 57
## Iteration: 58
## Iteration: 59
## Iteration: 60
## Iteration: 61
## Iteration: 62
## Iteration: 63
## Iteration: 64
## Iteration: 65
## Iteration: 66
## Iteration: 67
## Iteration: 68
## Iteration: 69
## Iteration: 70
## Iteration: 71
## Iteration: 72
## Iteration: 73
## Iteration: 74
## Iteration: 75
## Iteration: 76
## Iteration: 77
## Iteration: 78
## Iteration: 79
## Iteration: 80
## Iteration: 81
## Iteration: 82
## Iteration: 83
## Iteration: 84
## Iteration: 85
## Iteration: 86
## Iteration: 87
## Iteration: 88
## Iteration: 89
## Iteration: 90
## Iteration: 91
## Iteration: 92
## Iteration: 93
## Iteration: 94
## Iteration: 95
## Iteration: 96
## Iteration: 97
## Iteration: 98
## Iteration: 99
## Iteration: 100
## Iteration: 101
## Iteration: 102
## Iteration: 103
## Iteration: 104
## Iteration: 105
## Iteration: 106
## Iteration: 107
## Iteration: 108
## Iteration: 109
## Iteration: 110
## Iteration: 111
## Iteration: 112
## Iteration: 113
## Iteration: 114
## Iteration: 115
## Iteration: 116
## Iteration: 117
## Iteration: 118
## Iteration: 119
## Iteration: 120
## Iteration: 121
## Iteration: 122
## Iteration: 123
## Iteration: 124
## Iteration: 125
## Iteration: 126
## Iteration: 127
## Iteration: 128
## Iteration: 129
## Iteration: 130
## Iteration: 131
## Iteration: 132
## Iteration: 133
## Iteration: 134
## Iteration: 135
## Iteration: 136
## Iteration: 137
## Iteration: 138
## Iteration: 139
## Iteration: 140
## Iteration: 141
## Iteration: 142
## Iteration: 143
## Iteration: 144
## Iteration: 145
## Iteration: 146
## Iteration: 147
## Iteration: 148
## Iteration: 149
## Iteration: 150
## Iteration: 151
## Iteration: 152
## Iteration: 153
## Iteration: 154
## Iteration: 155
## Iteration: 156
## Iteration: 157
## Iteration: 158
## Iteration: 159
## Iteration: 160
## Iteration: 161
## Iteration: 162
## Iteration: 163
## Iteration: 164
## Iteration: 165
## Iteration: 166
## Iteration: 167
## Iteration: 168
## Iteration: 169
## Iteration: 170
## Iteration: 171
## Iteration: 172
## Iteration: 173
## Iteration: 174
## Iteration: 175
## Iteration: 176
## Iteration: 177
## Iteration: 178
## Iteration: 179
## Iteration: 180
## Iteration: 181
## Iteration: 182
## Iteration: 183
## Iteration: 184
## Iteration: 185
## Iteration: 186
## Iteration: 187
## Iteration: 188
## Iteration: 189
## Iteration: 190
## Iteration: 191
## Iteration: 192
## Iteration: 193
## Iteration: 194
## Iteration: 195
## Iteration: 196
## Iteration: 197
## Iteration: 198
## Iteration: 199
## Iteration: 200
## Iteration: 201
## Iteration: 202
## Iteration: 203
## Iteration: 204
## Iteration: 205
## Iteration: 206
## Iteration: 207
## Iteration: 208
## Iteration: 209
## Iteration: 210
## Iteration: 211
## Iteration: 212
## Iteration: 213
## Iteration: 214
## Iteration: 215
## Iteration: 216
## Iteration: 217
## Iteration: 218
## Iteration: 219
## Iteration: 220
## Iteration: 221
## Iteration: 222
## Iteration: 223
## Iteration: 224
## Iteration: 225
## Iteration: 226
## Iteration: 227
## Iteration: 228
## Iteration: 229
## Iteration: 230
## Iteration: 231
## Iteration: 232
## Iteration: 233
## Iteration: 234
## Iteration: 235
## Iteration: 236
## Iteration: 237
## Iteration: 238
## Iteration: 239
## Iteration: 240
## Iteration: 241
## Iteration: 242
## Iteration: 243
## Iteration: 244
## Iteration: 245
## Iteration: 246
## Iteration: 247
## Iteration: 248
## Iteration: 249
## Iteration: 250
## Iteration: 251
## Iteration: 252
## Iteration: 253
## Iteration: 254
## Iteration: 255
## Iteration: 256
## Iteration: 257
## Iteration: 258
## Iteration: 259
## Iteration: 260
## Iteration: 261
## Iteration: 262
## Iteration: 263
## Iteration: 264
## Iteration: 265
## Iteration: 266
## Iteration: 267
## Iteration: 268
## Iteration: 269
## Iteration: 270
## Iteration: 271
## Iteration: 272
## Iteration: 273
## Iteration: 274
## Iteration: 275
## Iteration: 276
## Iteration: 277
## Iteration: 278
## Iteration: 279
## Iteration: 280
## Iteration: 281
## Iteration: 282
## Iteration: 283
## Iteration: 284
## Iteration: 285
## Iteration: 286
## Iteration: 287
## Iteration: 288
## Iteration: 289
## Iteration: 290
## Iteration: 291
## Iteration: 292
## Iteration: 293
## Iteration: 294
## Iteration: 295
## Iteration: 296
## Iteration: 297
## Iteration: 298
## Iteration: 299
## Iteration: 300
## Iteration: 301
## Iteration: 302
## Iteration: 303
## Iteration: 304
## Iteration: 305
## Iteration: 306
## Iteration: 307
## Iteration: 308
## Iteration: 309
## Iteration: 310
## Iteration: 311
## Iteration: 312
## Iteration: 313
## Iteration: 314
## Iteration: 315
## Iteration: 316
## Iteration: 317
## Iteration: 318
## Iteration: 319
## Iteration: 320
## Iteration: 321
## Iteration: 322
## Iteration: 323
## Iteration: 324
## Iteration: 325
## Iteration: 326
## Iteration: 327
## Iteration: 328
## Iteration: 329
## Iteration: 330
## Iteration: 331
## Iteration: 332
## Iteration: 333
## Iteration: 334
## Iteration: 335
## Iteration: 336
## Iteration: 337
## Iteration: 338
## Iteration: 339
## Iteration: 340
## Iteration: 341
## Iteration: 342
## Iteration: 343
## Iteration: 344
## Iteration: 345
## Iteration: 346
## Iteration: 347
## Iteration: 348
## Iteration: 349
## Iteration: 350
## Iteration: 351
## Iteration: 352
## Iteration: 353
## Iteration: 354
## Iteration: 355
## Iteration: 356
## Iteration: 357
## Iteration: 358
## Iteration: 359
## Iteration: 360
## Iteration: 361
## Iteration: 362
## Iteration: 363
## Iteration: 364
## Iteration: 365
## Iteration: 366
## Iteration: 367
## Iteration: 368
## Iteration: 369
## Iteration: 370
## Iteration: 371
## Iteration: 372
## Iteration: 373
## Iteration: 374
## Iteration: 375
## Iteration: 376
## Iteration: 377
## Iteration: 378
## Iteration: 379
## Iteration: 380
## Iteration: 381
## Iteration: 382
## Iteration: 383
## Iteration: 384
## Iteration: 385
## Iteration: 386
## Iteration: 387
## Iteration: 388
## Iteration: 389
## Iteration: 390
## Iteration: 391
## Iteration: 392
## Iteration: 393
## Iteration: 394
## Iteration: 395
## Iteration: 396
## Iteration: 397
## Iteration: 398
## Iteration: 399
## Iteration: 400
## Iteration: 401
## Iteration: 402
## Iteration: 403
## Iteration: 404
## Iteration: 405
## Iteration: 406
## Iteration: 407
## Iteration: 408
## Iteration: 409
## Iteration: 410
## Iteration: 411
## Iteration: 412
## Iteration: 413
## Iteration: 414
## Iteration: 415
## Iteration: 416
## Iteration: 417
## Iteration: 418
## Iteration: 419
## Iteration: 420
## Iteration: 421
## Iteration: 422
## Iteration: 423
## Iteration: 424
## Iteration: 425
## Iteration: 426
## Iteration: 427
## Iteration: 428
## Iteration: 429
## Iteration: 430
## Iteration: 431
## Iteration: 432
## Iteration: 433
## Iteration: 434
## Iteration: 435
## Iteration: 436
## Iteration: 437
## Iteration: 438
## Iteration: 439
## Iteration: 440
## Iteration: 441
## Iteration: 442
## Iteration: 443
## Iteration: 444
## Iteration: 445
## Iteration: 446
## Iteration: 447
## Iteration: 448
## Iteration: 449
## Iteration: 450
## Iteration: 451
## Iteration: 452
## Iteration: 453
## Iteration: 454
## Iteration: 455
## Iteration: 456
## Iteration: 457
## Iteration: 458
## Iteration: 459
## Iteration: 460
## Iteration: 461
## Iteration: 462
## Iteration: 463
## Iteration: 464
## Iteration: 465
## Iteration: 466
## Iteration: 467
## Iteration: 468
## Iteration: 469
## Iteration: 470
## Iteration: 471
## Iteration: 472
## Iteration: 473
## Iteration: 474
## Iteration: 475
## Iteration: 476
## Iteration: 477
## Iteration: 478
## Iteration: 479
## Iteration: 480
## Iteration: 481
## Iteration: 482
## Iteration: 483
## Iteration: 484
## Iteration: 485
## Iteration: 486
## Iteration: 487
## Iteration: 488
## Iteration: 489
## Iteration: 490
## Iteration: 491
## Iteration: 492
## Iteration: 493
## Iteration: 494
## Iteration: 495
## Iteration: 496
## Iteration: 497
## Iteration: 498
## Iteration: 499
## Iteration: 500
## Iteration: 501
## Iteration: 502
## Iteration: 503
## Iteration: 504
## Iteration: 505
## Iteration: 506
## Iteration: 507
## Iteration: 508
## Iteration: 509
## Iteration: 510
## Iteration: 511
## Iteration: 512
## Iteration: 513
## Iteration: 514
## Iteration: 515
## Iteration: 516
## Iteration: 517
## Iteration: 518
## Iteration: 519
## Iteration: 520
## Iteration: 521
## Iteration: 522
## Iteration: 523
## Iteration: 524
## Iteration: 525
## Iteration: 526
## Iteration: 527
## Iteration: 528
## Iteration: 529
## Iteration: 530
## Iteration: 531
## Iteration: 532
## Iteration: 533
## Iteration: 534
## Iteration: 535
## Iteration: 536
## Iteration: 537
## Iteration: 538
## Iteration: 539
## Iteration: 540
## Iteration: 541
## Iteration: 542
## Iteration: 543
## Iteration: 544
## Iteration: 545
## Iteration: 546
## Iteration: 547
## Iteration: 548
## Iteration: 549
## Iteration: 550
## Iteration: 551
## Iteration: 552
## Iteration: 553
## Iteration: 554
## Iteration: 555
## Iteration: 556
## Iteration: 557
## Iteration: 558
## Iteration: 559
## Iteration: 560
## Iteration: 561
## Iteration: 562
## Iteration: 563
## Iteration: 564
## Iteration: 565
## Iteration: 566
## Iteration: 567
## Iteration: 568
## Iteration: 569
## Iteration: 570
## Iteration: 571
## Iteration: 572
## Iteration: 573
## Iteration: 574
## Iteration: 575
## Iteration: 576
## Iteration: 577
## Iteration: 578
## Iteration: 579
## Iteration: 580
## Iteration: 581
## Iteration: 582
## Iteration: 583
## Iteration: 584
## Iteration: 585
## Iteration: 586
## Iteration: 587
## Iteration: 588
## Iteration: 589
## Iteration: 590
## Iteration: 591
## Iteration: 592
## Iteration: 593
## Iteration: 594
## Iteration: 595
## Iteration: 596
## Iteration: 597
## Iteration: 598
## Iteration: 599
## Iteration: 600
## Iteration: 601
## Iteration: 602
## Iteration: 603
## Iteration: 604
## Iteration: 605
## Iteration: 606
## Iteration: 607
## Iteration: 608
## Iteration: 609
## Iteration: 610
## Iteration: 611
## Iteration: 612
## Iteration: 613
## Iteration: 614
## Iteration: 615
## Iteration: 616
## Iteration: 617
## Iteration: 618
## Iteration: 619
## Iteration: 620
## Iteration: 621
## Iteration: 622
## Iteration: 623
## Iteration: 624
## Iteration: 625
## Iteration: 626
## Iteration: 627
## Iteration: 628
## Iteration: 629
## Iteration: 630
## Iteration: 631
## Iteration: 632
## Iteration: 633
## Iteration: 634
## Iteration: 635
## Iteration: 636
## Iteration: 637
## Iteration: 638
## Iteration: 639
## Iteration: 640
## Iteration: 641
## Iteration: 642
## Iteration: 643
## Iteration: 644
## Iteration: 645
## Iteration: 646
## Iteration: 647
## Iteration: 648
## Iteration: 649
## Iteration: 650
## Iteration: 651
## Iteration: 652
## Iteration: 653
## Iteration: 654
## Iteration: 655
## Iteration: 656
## Iteration: 657
## Iteration: 658
## Iteration: 659
## Iteration: 660
## Iteration: 661
## Iteration: 662
## Iteration: 663
## Iteration: 664
## Iteration: 665
## Iteration: 666
## Iteration: 667
## Iteration: 668
## Iteration: 669
## Iteration: 670
## Iteration: 671
## Iteration: 672
## Iteration: 673
## Iteration: 674
## Iteration: 675
## Iteration: 676
## Iteration: 677
## Iteration: 678
## Iteration: 679
## Iteration: 680
## Iteration: 681
## Iteration: 682
## Iteration: 683
## Iteration: 684
## Iteration: 685
## Iteration: 686
## Iteration: 687
## Iteration: 688
## Iteration: 689
## Iteration: 690
## Iteration: 691
## Iteration: 692
## Iteration: 693
## Iteration: 694
## Iteration: 695
## Iteration: 696
## Iteration: 697
## Iteration: 698
## Iteration: 699
## Iteration: 700
## Iteration: 701
## Iteration: 702
## Iteration: 703
## Iteration: 704
## Iteration: 705
## Iteration: 706
## Iteration: 707
## Iteration: 708
## Iteration: 709
## Iteration: 710
## Iteration: 711
## Iteration: 712
## Iteration: 713
## Iteration: 714
## Iteration: 715
## Iteration: 716
## Iteration: 717
## Iteration: 718
## Iteration: 719
## Iteration: 720
## Iteration: 721
## Iteration: 722
## Iteration: 723
## Iteration: 724
## Iteration: 725
## Iteration: 726
## Iteration: 727
## Iteration: 728
## Iteration: 729
## Iteration: 730
## Iteration: 731
## Iteration: 732
## Iteration: 733
## Iteration: 734
## Iteration: 735
## Iteration: 736
## Iteration: 737
## Iteration: 738
## Iteration: 739
## Iteration: 740
## Iteration: 741
## Iteration: 742
## Iteration: 743
## Iteration: 744
## Iteration: 745
## Iteration: 746
## Iteration: 747
## Iteration: 748
## Iteration: 749
## Iteration: 750
## Iteration: 751
## Iteration: 752
## Iteration: 753
## Iteration: 754
## Iteration: 755
## Iteration: 756
## Iteration: 757
## Iteration: 758
## Iteration: 759
## Iteration: 760
## Iteration: 761
## Iteration: 762
## Iteration: 763
## Iteration: 764
## Iteration: 765
## Iteration: 766
## Iteration: 767
## Iteration: 768
## Iteration: 769
## Iteration: 770
## Iteration: 771
## Iteration: 772
## Iteration: 773
## Iteration: 774
## Iteration: 775
## Iteration: 776
## Iteration: 777
## Iteration: 778
## Iteration: 779
## Iteration: 780
## Iteration: 781
## Iteration: 782
## Iteration: 783
## Iteration: 784
## Iteration: 785
## Iteration: 786
## Iteration: 787
## Iteration: 788
## Iteration: 789
## Iteration: 790
## Iteration: 791
## Iteration: 792
## Iteration: 793
## Iteration: 794
## Iteration: 795
## Iteration: 796
## Iteration: 797
## Iteration: 798
## Iteration: 799
## Iteration: 800
## Iteration: 801
## Iteration: 802
## Iteration: 803
## Iteration: 804
## Iteration: 805
## Iteration: 806
## Iteration: 807
## Iteration: 808
## Iteration: 809
## Iteration: 810
## Iteration: 811
## Iteration: 812
## Iteration: 813
## Iteration: 814
## Iteration: 815
## Iteration: 816
## Iteration: 817
## Iteration: 818
## Iteration: 819
## Iteration: 820
## Iteration: 821
## Iteration: 822
## Iteration: 823
## Iteration: 824
## Iteration: 825
## Iteration: 826
## Iteration: 827
## Iteration: 828
## Iteration: 829
## Iteration: 830
## Iteration: 831
## Iteration: 832
## Iteration: 833
## Iteration: 834
## Iteration: 835
## Iteration: 836
## Iteration: 837
## Iteration: 838
## Iteration: 839
## Iteration: 840
## Iteration: 841
## Iteration: 842
## Iteration: 843
## Iteration: 844
## Iteration: 845
## Iteration: 846
## Iteration: 847
## Iteration: 848
## Iteration: 849
## Iteration: 850
## Iteration: 851
## Iteration: 852
## Iteration: 853
## Iteration: 854
## Iteration: 855
## Iteration: 856
## Iteration: 857
## Iteration: 858
## Iteration: 859
## Iteration: 860
## Iteration: 861
## Iteration: 862
## Iteration: 863
## Iteration: 864
## Iteration: 865
## Iteration: 866
## Iteration: 867
## Iteration: 868
## Iteration: 869
## Iteration: 870
## Iteration: 871
## Iteration: 872
## Iteration: 873
## Iteration: 874
## Iteration: 875
## Iteration: 876
## Iteration: 877
## Iteration: 878
## Iteration: 879
## Iteration: 880
## Iteration: 881
## Iteration: 882
## Iteration: 883
## Iteration: 884
## Iteration: 885
## Iteration: 886
## Iteration: 887
## Iteration: 888
## Iteration: 889
## Iteration: 890
## Iteration: 891
## Iteration: 892
## Iteration: 893
## Iteration: 894
## Iteration: 895
## Iteration: 896
## Iteration: 897
## Iteration: 898
## Iteration: 899
## Iteration: 900
## Iteration: 901
## Iteration: 902
## Iteration: 903
## Iteration: 904
## Iteration: 905
## Iteration: 906
## Iteration: 907
## Iteration: 908
## Iteration: 909
## Iteration: 910
## Iteration: 911
## Iteration: 912
## Iteration: 913
## Iteration: 914
## Iteration: 915
## Iteration: 916
## Iteration: 917
## Iteration: 918
## Iteration: 919
## Iteration: 920
## Iteration: 921
## Iteration: 922
## Iteration: 923
## Iteration: 924
## Iteration: 925
## Iteration: 926
## Iteration: 927
## Iteration: 928
## Iteration: 929
## Iteration: 930
## Iteration: 931
## Iteration: 932
## Iteration: 933
## Iteration: 934
## Iteration: 935
## Iteration: 936
## Iteration: 937
## Iteration: 938
## Iteration: 939
## Iteration: 940
## Iteration: 941
## Iteration: 942
## Iteration: 943
## Iteration: 944
## Iteration: 945
## Iteration: 946
## Iteration: 947
## Iteration: 948
## Iteration: 949
## Iteration: 950
## Iteration: 951
## Iteration: 952
## Iteration: 953
## Iteration: 954
## Iteration: 955
## Iteration: 956
## Iteration: 957
## Iteration: 958
## Iteration: 959
## Iteration: 960
## Iteration: 961
## Iteration: 962
## Iteration: 963
## Iteration: 964
## Iteration: 965
## Iteration: 966
## Iteration: 967
## Iteration: 968
## Iteration: 969
## Iteration: 970
## Iteration: 971
## Iteration: 972
## Iteration: 973
## Iteration: 974
## Iteration: 975
## Iteration: 976
## Iteration: 977
## Iteration: 978
## Iteration: 979
## Iteration: 980
## Iteration: 981
## Iteration: 982
## Iteration: 983
## Iteration: 984
## Iteration: 985
## Iteration: 986
## Iteration: 987
## Iteration: 988
## Iteration: 989
## Iteration: 990
## Iteration: 991
## Iteration: 992
## Iteration: 993
## Iteration: 994
## Iteration: 995
## Iteration: 996
## Iteration: 997
## Iteration: 998
## Iteration: 999
## Iteration: 1000
## Iteration: 1
## Estimated Bayes factor in favor of fit.lang_context over fit.base: 0.64011

## NOTE: Results may be misleading due to involvement in interactions

More exploratory stuff