# Cargar las librerías necesarias
library(readxl)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(stats)
# Cargar los datos
data_admision <- read_excel("admision.xlsx", sheet = "data")
# Eliminar las filas con valores NA
data_admision <- na.omit(data_admision)
# Ajustar el modelo de regresión logística
modelo_logistico <- glm(admitido ~ letras + ciencias + prestigio, data = data_admision, family = binomial)
# Resumen del modelo
summary(modelo_logistico)
## 
## Call:
## glm(formula = admitido ~ letras + ciencias + prestigio, family = binomial, 
##     data = data_admision)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -6.249705   1.155732  -5.408 6.39e-08 ***
## letras       0.002294   0.001092   2.101   0.0356 *  
## ciencias     0.007770   0.003275   2.373   0.0177 *  
## prestigio    0.560031   0.127137   4.405 1.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 499.98  on 399  degrees of freedom
## Residual deviance: 459.44  on 396  degrees of freedom
## AIC: 467.44
## 
## Number of Fisher Scoring iterations: 4
# Calcular los coeficientes exponentiados para interpretar las razones de probabilidad (odds ratio)
exp(coef(modelo_logistico))
## (Intercept)      letras    ciencias   prestigio 
## 0.001931023 1.002296593 1.007800402 1.750727449