# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize and compare skewness of your portfolio and its assets.

Choose your stocks.

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("WMT", "GOOG", "NVDA")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset (change the weigting scheme)

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GOOG" "NVDA" "WMT"
# weights
weights <- c(0.25, 0.25, 0.2)
weights
## [1] 0.25 0.25 0.20
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 3 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 GOOG       0.25
## 2 NVDA       0.25
## 3 WMT        0.2

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0215 
##  2 2013-02-28  0.0265 
##  3 2013-03-28  0.0136 
##  4 2013-04-30  0.0346 
##  5 2013-05-31  0.0211 
##  6 2013-06-28 -0.00587
##  7 2013-07-31  0.0182 
##  8 2013-08-30 -0.0171 
##  9 2013-09-30  0.0245 
## 10 2013-10-31  0.0420 
## # ℹ 50 more rows

5 Compute Skewness

asset_returns_skew_tbl <- asset_returns_tbl %>%

    # skewness for each asset
    group_by(asset) %>%
    summarise(skew = skewness(returns)) %>%
    ungroup() %>%

    # skewness of portfolio
    add_row(tibble(asset = "Portfolio",
                  skew = skewness(portfolio_returns_tbl$returns)))


asset_returns_skew_tbl %>%

    ggplot(aes(asset, skew, color = asset)) +
    geom_point() +

    # Add label for portfolio
    ggrepel::geom_text_repel(aes(label = asset),
                             data = asset_returns_skew_tbl %>%
                                 filter(asset == "Portfolio"),
                             size = 5,
                             show.legend = FALSE) +
    labs(y = "skewness")

6 Plot: Skewness Comparison

# skewness of portfolio
    add_row(tibble(asset = "Portfolio",
                  skew = skewness(portfolio_returns_tbl$returns)))
## # A tibble: 2 × 2
##   asset       skew
##   <chr>      <dbl>
## 1 Portfolio  0.692
## 2 <NA>      NA
asset_returns_skew_tbl %>%

    ggplot(aes(asset, skew, color = asset)) +
    geom_point() +

    # Add label for portfolio
    ggrepel::geom_text_repel(aes(label = asset),
                             data = asset_returns_skew_tbl %>%
                                 filter(asset == "Portfolio"),
                             size = 5,
                             show.legend = FALSE) +
    labs(y = "skewness")

Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.

Looking at these stocks I would say Nividia sticks out the most as it sits at roughlt 0.9. This gives for less risk while still gaining the high returns of the riskier stocks like Walmart.