data <- read_excel("../00_data/myData.xlsx")
data
## # A tibble: 236 × 20
## TEAMID TEAM PAKE PAKERANK PASE PASERANK GAMES W L WINPERCENT R64
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Abil… 0.7 45 0.7 52 3 1 2 0.333 2
## 2 2 Akron -0.9 179 -1.1 187 4 0 4 0 4
## 3 3 Alab… -2.1 211 -2.9 220 10 5 5 0.5 5
## 4 4 Alba… -0.4 147 -0.3 138 3 0 3 0 3
## 5 6 Amer… -0.5 160 -0.4 150 3 0 3 0 3
## 6 8 Ariz… -1.7 206 -2.5 216 28 17 11 0.607 11
## 7 9 Ariz… -2 209 -1.9 206 5 1 4 0.2 4
## 8 10 Arka… 4.3 11 3.5 16 18 11 7 0.611 7
## 9 11 Arka… 0 76 0 78 1 0 1 0 1
## 10 12 Aubu… 0.6 53 1.4 30 11 7 4 0.636 4
## # ℹ 226 more rows
## # ℹ 9 more variables: R32 <dbl>, S16 <dbl>, E8 <dbl>, F4 <dbl>, F2 <dbl>,
## # CHAMP <dbl>, TOP2 <dbl>, F4PERCENT <dbl>, CHAMPPERCENT <dbl>
data %>%
select(GAMES, TEAM, PAKE)
## # A tibble: 236 × 3
## GAMES TEAM PAKE
## <dbl> <chr> <dbl>
## 1 3 Abilene Christian 0.7
## 2 4 Akron -0.9
## 3 10 Alabama -2.1
## 4 3 Albany -0.4
## 5 3 American -0.5
## 6 28 Arizona -1.7
## 7 5 Arizona St. -2
## 8 18 Arkansas 4.3
## 9 1 Arkansas Pine Bluff 0
## 10 11 Auburn 0.6
## # ℹ 226 more rows
data %>%
pivot_wider(names_from = GAMES, values_from = PAKE)
## # A tibble: 236 × 56
## TEAMID TEAM PAKERANK PASE PASERANK W L WINPERCENT R64 R32 S16
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Abil… 45 0.7 52 1 2 0.333 2 1 0
## 2 2 Akron 179 -1.1 187 0 4 0 4 0 0
## 3 3 Alab… 211 -2.9 220 5 5 0.5 5 3 2
## 4 4 Alba… 147 -0.3 138 0 3 0 3 0 0
## 5 6 Amer… 160 -0.4 150 0 3 0 3 0 0
## 6 8 Ariz… 206 -2.5 216 17 11 0.607 11 7 7
## 7 9 Ariz… 209 -1.9 206 1 4 0.2 4 1 0
## 8 10 Arka… 11 3.5 16 11 7 0.611 7 6 3
## 9 11 Arka… 76 0 78 0 1 0 1 0 0
## 10 12 Aubu… 53 1.4 30 7 4 0.636 4 4 1
## # ℹ 226 more rows
## # ℹ 45 more variables: E8 <dbl>, F4 <dbl>, F2 <dbl>, CHAMP <dbl>, TOP2 <dbl>,
## # F4PERCENT <dbl>, CHAMPPERCENT <dbl>, `3` <dbl>, `4` <dbl>, `10` <dbl>,
## # `28` <dbl>, `5` <dbl>, `18` <dbl>, `1` <dbl>, `11` <dbl>, `2` <dbl>,
## # `29` <dbl>, `6` <dbl>, `26` <dbl>, `15` <dbl>, `8` <dbl>, `7` <dbl>,
## # `17` <dbl>, `9` <dbl>, `46` <dbl>, `19` <dbl>, `47` <dbl>, `14` <dbl>,
## # `53` <dbl>, `22` <dbl>, `43` <dbl>, `31` <dbl>, `20` <dbl>, `16` <dbl>, …
data %>%
pivot_longer('GAMES' : 'PAKE', names_to = "GAMES", values_to = "PAKE")
## # A tibble: 1,180 × 17
## TEAMID TEAM W L WINPERCENT R64 R32 S16 E8 F4 F2 CHAMP
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Abil… 1 2 0.333 2 1 0 0 0 0 0
## 2 1 Abil… 1 2 0.333 2 1 0 0 0 0 0
## 3 1 Abil… 1 2 0.333 2 1 0 0 0 0 0
## 4 1 Abil… 1 2 0.333 2 1 0 0 0 0 0
## 5 1 Abil… 1 2 0.333 2 1 0 0 0 0 0
## 6 2 Akron 0 4 0 4 0 0 0 0 0 0
## 7 2 Akron 0 4 0 4 0 0 0 0 0 0
## 8 2 Akron 0 4 0 4 0 0 0 0 0 0
## 9 2 Akron 0 4 0 4 0 0 0 0 0 0
## 10 2 Akron 0 4 0 4 0 0 0 0 0 0
## # ℹ 1,170 more rows
## # ℹ 5 more variables: TOP2 <dbl>, F4PERCENT <dbl>, CHAMPPERCENT <dbl>,
## # GAMES <chr>, PAKE <dbl>
data %>%
unite(col = "newName", R64:R32, sep = "/", remove = TRUE)
## # A tibble: 236 × 19
## TEAMID TEAM PAKE PAKERANK PASE PASERANK GAMES W L WINPERCENT
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Abilene Ch… 0.7 45 0.7 52 3 1 2 0.333
## 2 2 Akron -0.9 179 -1.1 187 4 0 4 0
## 3 3 Alabama -2.1 211 -2.9 220 10 5 5 0.5
## 4 4 Albany -0.4 147 -0.3 138 3 0 3 0
## 5 6 American -0.5 160 -0.4 150 3 0 3 0
## 6 8 Arizona -1.7 206 -2.5 216 28 17 11 0.607
## 7 9 Arizona St. -2 209 -1.9 206 5 1 4 0.2
## 8 10 Arkansas 4.3 11 3.5 16 18 11 7 0.611
## 9 11 Arkansas P… 0 76 0 78 1 0 1 0
## 10 12 Auburn 0.6 53 1.4 30 11 7 4 0.636
## # ℹ 226 more rows
## # ℹ 9 more variables: newName <chr>, S16 <dbl>, E8 <dbl>, F4 <dbl>, F2 <dbl>,
## # CHAMP <dbl>, TOP2 <dbl>, F4PERCENT <dbl>, CHAMPPERCENT <dbl>
data %>%
separate(col = PAKE, into = c("R64","R32"), sep = "/")
## Warning: Expected 2 pieces. Missing pieces filled with `NA` in 236 rows [1, 2, 3, 4, 5,
## 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].
## # A tibble: 236 × 19
## TEAMID TEAM R64 R32 PAKERANK PASE PASERANK GAMES W L WINPERCENT
## <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Abil… 0.7 <NA> 45 0.7 52 3 1 2 0.333
## 2 2 Akron -0.9 <NA> 179 -1.1 187 4 0 4 0
## 3 3 Alab… -2.1 <NA> 211 -2.9 220 10 5 5 0.5
## 4 4 Alba… -0.4 <NA> 147 -0.3 138 3 0 3 0
## 5 6 Amer… -0.5 <NA> 160 -0.4 150 3 0 3 0
## 6 8 Ariz… -1.7 <NA> 206 -2.5 216 28 17 11 0.607
## 7 9 Ariz… -2 <NA> 209 -1.9 206 5 1 4 0.2
## 8 10 Arka… 4.3 <NA> 11 3.5 16 18 11 7 0.611
## 9 11 Arka… 0 <NA> 76 0 78 1 0 1 0
## 10 12 Aubu… 0.6 <NA> 53 1.4 30 11 7 4 0.636
## # ℹ 226 more rows
## # ℹ 8 more variables: S16 <dbl>, E8 <dbl>, F4 <dbl>, F2 <dbl>, CHAMP <dbl>,
## # TOP2 <dbl>, F4PERCENT <dbl>, CHAMPPERCENT <dbl>