# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and compare skewness of your portfolio and its assets.
Choose your stocks.
from 2012-12-31 to 2017-12-31
# Choose stocks
symbols <- c("CRWD", "AMZN", "SHOP","TTD", "NVDA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2022-01-01")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "CRWD" "NVDA" "SHOP" "TTD"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 Ă— 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.25
## 2 CRWD 0.25
## 3 NVDA 0.2
## 4 SHOP 0.2
## 5 TTD 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 33 Ă— 2
## date returns
## <date> <dbl>
## 1 2022-02-28 -0.0201
## 2 2022-03-31 0.0490
## 3 2022-04-29 -0.286
## 4 2022-05-31 -0.0995
## 5 2022-06-30 -0.118
## 6 2022-07-29 0.146
## 7 2022-08-31 -0.0400
## 8 2022-09-30 -0.135
## 9 2022-10-31 0.0275
## 10 2022-11-30 -0.0149
## # ℹ 23 more rows
portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = table.Stats) %>%
select(Skewness)
portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 Ă— 1
## Skewness
## <dbl>
## 1 -0.456
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "Portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 Ă— 2
## asset skew
## <chr> <dbl>
## 1 AMZN -0.173
## 2 CRWD -1.04
## 3 NVDA -0.673
## 4 SHOP 0.0383
## 5 TTD 0.161
## 6 Portfolio -0.456
# Plot skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset),
data = asset_skewness_tbl %>%
filter(asset == "Portfolio")) +
labs(y = "skewness")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
TTD has a skewness close to 0, while SHOP is right behind it with a skewness of .0364. These both have bell shaped curves due to their skewness being close to zero so they have a symetrical distribution of returns. The rest of the stocks are negative skewness. These stocks aren’t guaranteed to give you smaller returns but they are more likely to give you smaller, or negative returns These stocks would have a tail to the left.