# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Visualize and compare skewness of your portfolio and its assets.

Choose your stocks.

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("GOOG", "GME", "NVDA", "V")

prices <- tq_get(x    = symbols, 
                 get  = "stock.prices",
                 from = "2012-12-31", 
                 to   = "2017-12-31")

2 Convert prices to returns (monthly)

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn,
                 period     = "monthly",
                 type       = "log") %>% 
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset (change the weigting scheme)

# symbols 
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GME"  "GOOG" "NVDA" "V"
# weights
weights <- c(0.25, 0.25, 0.25, 0.25)
weights
## [1] 0.25 0.25 0.25 0.25
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 4 Ă— 2
##   symbols weights
##   <chr>     <dbl>
## 1 GME        0.25
## 2 GOOG       0.25
## 3 NVDA       0.25
## 4 V          0.25

4 Build a portfolio

# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col   = asset,
                 returns_col  = returns,
                 weights      = w_tbl,
                 rebalance_on = "months")

portfolio_returns_tbl
## # A tibble: 60 Ă— 2
##    date       portfolio.returns
##    <date>                 <dbl>
##  1 2013-01-31           0.00716
##  2 2013-02-28           0.0451 
##  3 2013-03-28           0.0484 
##  4 2013-04-30           0.0804 
##  5 2013-05-31           0.0311 
##  6 2013-06-28           0.0607 
##  7 2013-07-31           0.0398 
##  8 2013-08-30          -0.00126
##  9 2013-09-30           0.0418 
## 10 2013-10-31           0.0666 
## # ℹ 50 more rows

5 Compute Skewness

portfolio_skew_tidyquant_builtin_percent <- portfolio_returns_tbl %>%
    
    tq_performance(Ra = portfolio.returns, 
                   performance_fun = table.Stats) %>%
    
    select(Skewness)

portfolio_skew_tidyquant_builtin_percent
## # A tibble: 1 Ă— 1
##   Skewness
##      <dbl>
## 1    0.186

6 Plot: Skewness Comparison

# Data transformation calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
    
    group_by(asset) %>%
    summarize(skew = skewness(returns)) %>%
    ungroup() %>%
    
    # Add portfolio skewness
    add_row(tibble(asset = "Portfolio",
                   skew  = skewness(portfolio_returns_tbl$portfolio.returns)))

asset_skewness_tbl
## # A tibble: 5 Ă— 2
##   asset       skew
##   <chr>      <dbl>
## 1 GME       -0.495
## 2 GOOG       0.784
## 3 NVDA       0.899
## 4 V          0.158
## 5 Portfolio  0.186
# Plot Skewness
asset_skewness_tbl %>%
    
    ggplot(aes(x = asset, y = skew, color = asset)) +
    geom_point() +
    
    ggrepel::geom_text_repel(aes(label = asset), 
                             data = asset_skewness_tbl %>%
                                 filter(asset == "Portfolio")) +
    
    labs(y = "skewness")

Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.

From looking at this graph alone, there are two assets that are more likely to return extreme positive returns than my portfolio. Those two assets are GOOG and NVDA. NVDA is more likely than GOOG but they are both much higher than the portfolio. While comparing it to the graph I have in my Apply 4, GOOG does not have the tallest bar in the center but NVDA does. Google’s bars are extremely shor and spread out quite evenly, NVDA has a tall bar in the middle and many throughput. Because of this, NVDA is more likely to return extreme positive returns than my portfolio.