# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Load packages
# Core
library(tidyverse)
library(tidyquant)
symbols <- c("LME", "NOC", "LOC", "UPS", "UNH")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "LME" "LOC" "NOC" "UNH" "UPS"
# weights
weights <- c(0.15, 0.15, 0.2, 0.2, 0.3)
weights
## [1] 0.15 0.15 0.20 0.20 0.30
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 LME 0.15
## 2 LOC 0.15
## 3 NOC 0.2
## 4 UNH 0.2
## 5 UPS 0.3
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 76 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0682
## 2 2013-02-28 -0.0113
## 3 2013-03-28 0.0118
## 4 2013-04-30 0.0518
## 5 2013-05-31 -0.0314
## 6 2013-06-28 0.0463
## 7 2013-07-08 0
## 8 2013-07-31 0.132
## 9 2013-08-30 -0.0411
## 10 2013-09-30 0.00328
## # ℹ 66 more rows
# Data transformation: calculate skewness
asset_skewness_tbl <- asset_returns_tbl %>%
group_by(asset) %>%
summarise(skew = skewness(returns)) %>%
ungroup() %>%
# Add portfolio skewness
add_row(tibble(asset = "portfolio",
skew = skewness(portfolio_returns_tbl$returns)))
asset_skewness_tbl
## # A tibble: 6 × 2
## asset skew
## <chr> <dbl>
## 1 LME 0.728
## 2 LOC 0.458
## 3 NOC 0.108
## 4 UNH -0.261
## 5 UPS -0.628
## 6 portfolio 0.635
# Plot Skewness
asset_skewness_tbl %>%
ggplot(aes(x = asset, y = skew, color = asset)) +
geom_point() +
ggrepel::geom_text_repel(aes(label = asset)) +
labs(y = "skewness") + theme(legend.position = "none")
Is any asset in your portfolio more likely to return extreme positive returns than your portfolio collectively? Discuss in terms of skewness. You may also refer to the distribution of returns you plotted in Code along 4.
LME is the only individual stock in my portfolio with a higher positive skewness, this would not though provide higher returns as a higher positive skewness refers to many values of smaller returns skewing the results, though UPS and UNH can be seen at the other end, showing more consistent returns, skewing the data to the left, NOC shows a more wide spread in the frequency of returns, as that’s what skewness measure, my portfolio is skewed towards positive because I weighted the stocks with greater positive skewness heavier than the others.