Hallar el intervalo de confianza de la variable accuracy

# Leer los datos
# archivo <- file.choose()
archivo <- '/Users/pctm/Documents/EDA/Dataset_IA_corte_II.xlsx'
data <- read_excel(archivo, col_names = TRUE)

# Crear la tabla y aplicar estilos
kable(data[1:20,], caption = "Algoritmos de inteligencia artificial utilizando frameworks de python") %>%
  kable_styling(full_width = TRUE) %>%
  scroll_box(width = "900px", height = "500px")
Algoritmos de inteligencia artificial utilizando frameworks de python
Algorithm Framework Problem_Type Dataset_Type Accuracy Precision Recall F1_Score Training_Time Date
SVM Scikit-learn Regression Time Series 0.6618051 0.6929447 NA 0.4426950 4.9785924 2023-03-08 11:26:21
K-Means Keras Clustering Time Series 0.7443216 0.4900292 0.8766533 0.4414046 NA 2023-03-09 11:26:21
Neural Network Keras Clustering Image 0.8852037 0.5948056 0.9685424 0.9644707 3.2825938 2023-03-10 11:26:21
SVM Keras Clustering Text 0.8416477 0.8424142 0.8748388 0.7041523 4.0416289 2023-03-11 11:26:21
SVM Scikit-learn Regression Tabular 0.7229514 0.6856109 0.3010956 0.6456472 3.6039908 2023-03-12 11:26:21
K-Means PyTorch Regression Image 0.6368133 0.6255330 7.4548096 0.8865271 3.0064753 2023-03-13 11:26:21
Neural Network PyTorch Regression Text 0.9985623 0.6366858 0.3357948 0.9014956 NA 2023-03-14 11:26:21
Neural Network Scikit-learn Regression Image 0.7130907 0.6756681 0.4803251 0.5993146 2.3283453 2023-03-15 11:26:21
SVM Keras Regression Time Series NA 0.8710099 0.3416673 0.8161708 3.4064529 2023-03-16 11:26:21
Random Forest Keras Regression Text 0.5818119 0.9352508 NA 0.8626737 3.4199049 2023-03-17 11:26:21
SVM PyTorch Regression Image 0.8974048 9.7320081 0.7806129 0.7927904 1.9283008 2023-03-18 11:26:21
SVM Keras Clustering Image 0.8468411 0.8721420 0.3801413 0.4909570 4.7142907 2023-03-19 11:26:21
SVM TensorFlow Clustering Tabular 0.6103848 0.5892441 0.5686872 0.9255299 0.9200495 2023-03-20 11:26:21
SVM PyTorch Clustering Image 0.5411905 0.8128808 0.6193656 0.7234567 2.5517613 2023-03-21 11:26:21
K-Means Keras Clustering Text 0.8402497 0.6625619 0.5583371 0.5694835 3.4853315 2023-03-22 11:26:21
Neural Network PyTorch Regression Text NA 0.5528024 0.3847175 0.6551369 3.5159654 2023-03-23 11:26:21
K-Means TensorFlow Classification Tabular 0.6366298 0.9045229 0.5932635 0.4225427 3.2783309 2023-03-24 11:26:21
K-Means PyTorch Regression Text 0.9754318 0.4230558 0.8258246 0.4767201 1.4489122 2023-03-25 11:26:21
K-Means PyTorch Classification Time Series 0.5755289 0.9410572 0.3497054 0.8593281 0.8654122 2023-03-26 11:26:21
SVM PyTorch Clustering Text 0.7161674 0.6768865 0.3561260 0.4000070 3.2161076 2023-03-27 11:26:21
t.test(data$Accuracy, conf.level = 0.95)
## 
##  One Sample t-test
## 
## data:  data$Accuracy
## t = 21.246, df = 520, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  0.7966857 0.9590306
## sample estimates:
## mean of x 
## 0.8778581
#SIN FUNCION
media_muestra <- mean(data$Accuracy, na.rm = TRUE)
media_muestra
## [1] 0.8778581
desv_est <- sd(data$Accuracy, na.rm = TRUE)
desv_est
## [1] 0.9431208
n <- sum(!is.na(data$Accuracy))
n
## [1] 521
nivel_confianza <- 0.955
gl <- n - 1

t_critico <- qt(1 - (1 - nivel_confianza) / 2, gl)
t_critico
## [1] 2.009503
error_estandar <- desv_est / sqrt(n)
error_estandar
## [1] 0.04131887
limite_inferior <- media_muestra - t_critico * error_estandar
limite_superior <- media_muestra + t_critico * error_estandar

limite_inferior
## [1] 0.7948277
limite_superior
## [1] 0.9608885