data <- matrix(c(6,9,10,6,8,3),nrow=3,byrow=T)
data
## [,1] [,2]
## [1,] 6 9
## [2,] 10 6
## [3,] 8 3
n <- 3
p <- 2
mu0 <- as.vector(c(9,5))
mu0
## [1] 9 5
xbar <- as.vector(apply(data,2,mean))
xbar
## [1] 8 6
S <- cov(data)
S
## [,1] [,2]
## [1,] 4 -3
## [2,] -3 9
a <- 0.01
Fc <- qf(1-a,p,n-p)
round(Fc,2)
## [1] 4999.5
T0 <- n*t((xbar-mu0)) %*% solve(S) %*% (xbar-mu0)
F0 <- ((n-p)/(p*(n-1)))*T0
round(F0,2)
## [,1]
## [1,] 0.19
Como F0=4999.5 ≥ Fc=0.64, rechazamos la hipótesis. # 2. MATRIZ DE COVARIANZA DESCONOCIDA
data2 <- matrix(c(2,12,8,9,6,9,8,10),nrow=4,byrow=T)
data2
## [,1] [,2]
## [1,] 2 12
## [2,] 8 9
## [3,] 6 9
## [4,] 8 10
n2 <- 4
p2 <- 2
mu02 <- as.vector(c(7,11))
mu02
## [1] 7 11
###Vector de medias muestral
xbar2 <- as.vector(apply(data2,2,mean))
xbar2
## [1] 6 10
S2 <- cov(data2)
S2
## [,1] [,2]
## [1,] 8.000000 -3.333333
## [2,] -3.333333 2.000000
a2 <- 0.03
Fc2 <- qf(1-a2,p2,n2-p2)
round(Fc2,2)
## [1] 32.33
T02 <- n2*t((xbar2-mu02)) %*% solve(S2) %*% (xbar2-mu02)
F02 <- ((n2-p2)/(p2*(n2-1)))*T02
round(F02,2)
## [,1]
## [1,] 4.55
Como F0 = 4.55 < Fc = 32.33, no rechazamos la hipótesis H0, no tenemos evidencia significativa para rechazar que M0 no es (7,11).
n3 <- 20
p3 <- 3
data3 <- matrix(c(3.7, 48.5, 9.3, 5.7, 65.1, 8, 3.8, 47.2, 10.9, 3.2, 53.2, 12, 3.1, 55.5, 9.7,
4.6, 36.1, 7.9,2.4, 24.8, 14, 7.2, 33.1, 7.6,
6.7, 47.4, 8.5,5.4, 54.1, 11.3, 3.9, 36.9, 12.7, 4.5, 58.8, 12.3, 3.5, 27.8, 9.8,
4.5,40.2, 8.4, 1.5, 13.5, 10.1, 8.5, 56.4, 7.1, 4.5, 71.6, 8.2, 6.5, 52.8, 10.9, 4.1, 44.1, 11.2, 5.5, 40.9, 9.4),nrow=20,byrow=T)
data3
## [,1] [,2] [,3]
## [1,] 3.7 48.5 9.3
## [2,] 5.7 65.1 8.0
## [3,] 3.8 47.2 10.9
## [4,] 3.2 53.2 12.0
## [5,] 3.1 55.5 9.7
## [6,] 4.6 36.1 7.9
## [7,] 2.4 24.8 14.0
## [8,] 7.2 33.1 7.6
## [9,] 6.7 47.4 8.5
## [10,] 5.4 54.1 11.3
## [11,] 3.9 36.9 12.7
## [12,] 4.5 58.8 12.3
## [13,] 3.5 27.8 9.8
## [14,] 4.5 40.2 8.4
## [15,] 1.5 13.5 10.1
## [16,] 8.5 56.4 7.1
## [17,] 4.5 71.6 8.2
## [18,] 6.5 52.8 10.9
## [19,] 4.1 44.1 11.2
## [20,] 5.5 40.9 9.4
mu03 <- as.vector(c(4,50,10))
mu03
## [1] 4 50 10
xbar3 <- as.vector(apply(data3,2,mean))
xbar3
## [1] 4.640 45.400 9.965
S3 <- cov(data3)
S3
## [,1] [,2] [,3]
## [1,] 2.879368 10.0100 -1.809053
## [2,] 10.010000 199.7884 -5.640000
## [3,] -1.809053 -5.6400 3.627658
a3 <- 0.03
Fc3 <- qf(1-a3,p3,n3-p3)
round(Fc3,2)
## [1] 3.79
T03 <- n3*t((xbar3-mu03)) %*% solve(S3) %*% (xbar3-mu03)
F03 <- ((n3-p3)/(p3*(n3-1)))*T03
round(F03,2)
## [,1]
## [1,] 2.9
Como F0 = 2.9 < Fc = 3.79, No rechazamos la hipótesis nula. Es decir, que en efecto el vector de medias de las variables de la transpiracion de mujeres saludables es igual a Mu0 (4,50,10). .
n4a <- 15
n4b <- 12
p4 <- 7
xbar4a <- as.vector(c(168.78, 63.89, 38.98, 73.46, 45.85, 57.24, 43.09))
xbar4b <- as.vector(c(177.58, 74.25, 41.67, 77.75, 49.00, 58.00, 45.62))
S4a <- matrix(c(
37.64, 22.1, 6.38, 15.65, 9.49, 2.75, 9.02, 22.1, 80.4, 7.36, 12.94, 14.39, 7.2, 9.31,
6.38, 7.36, 1.92, 3.06, 1.49, 0.76, 1.98,
15.65, 12.94, 3.06, 7.41, 3.99, 1.17, 4.53, 9.49, 14.39, 1.49, 3.99, 9.42, 2.559, 1.12,
2.75, 7.2, 0.76, 1.17, 2.559, 2.94, 0.95,
9.02, 9.31, 1.98, 4.53, 1.12, 0.95, 3.78),
nrow = 7, byrow = TRUE)
S4a
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 37.64 22.10 6.38 15.65 9.490 2.750 9.02
## [2,] 22.10 80.40 7.36 12.94 14.390 7.200 9.31
## [3,] 6.38 7.36 1.92 3.06 1.490 0.760 1.98
## [4,] 15.65 12.94 3.06 7.41 3.990 1.170 4.53
## [5,] 9.49 14.39 1.49 3.99 9.420 2.559 1.12
## [6,] 2.75 7.20 0.76 1.17 2.559 2.940 0.95
## [7,] 9.02 9.31 1.98 4.53 1.120 0.950 3.78
S4b <- matrix(c(45.53, 48.84, 9.48, 14.34, 14.86, 9.45, 8.92, 48.84, 74.2, 9.63, 19.34, 19.77, 9.9, 5.23, 9.48, 9.63, 2.79, 2.09, 3.23, 1.86, 2.31, 14.34, 19.34, 2.09, 12.57, 6.18, 2.36, 1.21, 14.86, 19.77, 3.23, 6.18, 6.77, 3.02, 1.84, 9.45, 9.9, 1.86, 2.36, 3.02, 3.13, 2.63, 8.92, 5.23, 2.31, 1.21, 1.84, 2.63, 6.14),
nrow = 7, byrow = TRUE)
S4b
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 45.53 48.84 9.48 14.34 14.86 9.45 8.92
## [2,] 48.84 74.20 9.63 19.34 19.77 9.90 5.23
## [3,] 9.48 9.63 2.79 2.09 3.23 1.86 2.31
## [4,] 14.34 19.34 2.09 12.57 6.18 2.36 1.21
## [5,] 14.86 19.77 3.23 6.18 6.77 3.02 1.84
## [6,] 9.45 9.90 1.86 2.36 3.02 3.13 2.63
## [7,] 8.92 5.23 2.31 1.21 1.84 2.63 6.14
Sp4 <- ((n4a-1)*S4a + (n4b-1)*S4b)/(n4a+n4b-2)
Sp4
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 41.1116 33.8656 7.7440 15.0736 11.85280 5.69800 8.9760
## [2,] 33.8656 77.6720 8.3588 15.7560 16.75720 8.38800 7.5148
## [3,] 7.7440 8.3588 2.3028 2.6332 2.25560 1.24400 2.1252
## [4,] 15.0736 15.7560 2.6332 9.6804 4.95360 1.69360 3.0692
## [5,] 11.8528 16.7572 2.2556 4.9536 8.25400 2.76184 1.4368
## [6,] 5.6980 8.3880 1.2440 1.6936 2.76184 3.02360 1.6892
## [7,] 8.9760 7.5148 2.1252 3.0692 1.43680 1.68920 4.8184
dif <- xbar4a - xbar4b
T04 <- ((n4a*n4b)/(n4a+n4b))*t(dif)%*%solve(Sp4)%*%dif
T04
## [,1]
## [1,] 26.08934
F04 <- ((n4a+n4b-2-p4)/(p4*(n4a+n4b-2-1)))*T04
round(F04,2)
## [,1]
## [1,] 2.8
a4 <- 0.06
Fc4 <- qf(1-a4,p4,(n4a+n4b-2-p4))
round(Fc4,2)
## [1] 2.44
Como F0=2.80 ≥ Fc=2.58,cae en la zona de rechazo por lo que rechazamos la hipótesis nula. Es decir, no existe diferencias detectables entre las variables/caracteristicas de mujeres y hombres.