H0: M0 = (9,5) Ha: M0 no es igual a (9,5)
# Información del problema
n <- 3
p <- 2
# Vector de medias específico a probar
mu0 <- as.vector(c(9,5))
# Vector de medias muestral
xbar <- as.vector(c(8,6))
# Matriz de covarianza muestral
x<- matrix(c(6,9,10,6,8,3),nrow=3, byrow=T)
x
## [,1] [,2]
## [1,] 6 9
## [2,] 10 6
## [3,] 8 3
S <- cov(x)
S
## [,1] [,2]
## [1,] 4 -3
## [2,] -3 9
T0 <- n*t((xbar-mu0)) %*% solve(S) %*% (xbar-mu0)
F0 <- ((n-p)/(p*(n-1)))*T0
round(F0,2)
## [,1]
## [1,] 0.19
a <- 0.01
Fc <- qf(1-a,p,n-p)
round(Fc,2)
## [1] 4999.5
Como FC > F0 no rechazamos H0 es decir no tenemos evidencia significativa para decir que M0 no es = (9,5)
H0: M0 = (7,11) Ha: M0 no es igual a (7,11)
# Información del problema
n <- 4
p <- 2
# Vector de medias específico a probar
mu0 <- as.vector(c(7,11))
# Vector de medias muestral
xbar <- as.vector(c(6,10))
# Matriz de covarianza muestral
x<- matrix(c(2,8,6,8,12,9,9,10),ncol=2)
x
## [,1] [,2]
## [1,] 2 12
## [2,] 8 9
## [3,] 6 9
## [4,] 8 10
S <- cov(x)
S
## [,1] [,2]
## [1,] 8.000000 -3.333333
## [2,] -3.333333 2.000000
T0 <- n*t((xbar-mu0)) %*% solve(S) %*% (xbar-mu0)
F0 <- ((n-p)/(p*(n-1)))*T0
round(F0,2)
## [,1]
## [1,] 4.55
a <- 0.03
Fc <- qf(1-a,p,n-p)
round(Fc,2)
## [1] 32.33
# Como FC > F0, es decir F0 cae dentro de la zona de no rechazo, por ende no rechazamos H0 ya que no tenemos evidencia significativa para decir que M0 no es = (7,11)
H0: M0= (4,50,10) Ha: M0 no es igual a (4,50,10)
# Información
n <- 20
p <- 3
a <- 0.03
# Vector de medias específico a probar
mu0 <- as.vector(c(4,50,10))
# Vector de medias muestral
data1 <- c(3.7,5.7,3.8,3.2,3.1,4.6,2.4,7.2,6.7,5.4,3.9,4.5,3.5,4.5,1.5,8.5,4.5,6.5,4.1,5.5)
data2 <- c(48.5,65.1,47.2,53.2,55.5,36.1,24.8,33.1,47.4,54.1,36.9,58.8,27.8,40.2,13.5,56.4,71.6,52.8,44.1,40.9)
data3 <- c(9.3,8,10.9,12,9.7,7.9,14,7.6,8.5,11.3,12.7,12.3,9.8,8.4,10.1,7.1,8.2,10.9,11.2,9.4)
xbar <- as.vector(c(4.64,45.4,10))
# Matriz de covarianza muestral
x<- matrix(c(data1,data2,data3),ncol=3)
x
## [,1] [,2] [,3]
## [1,] 3.7 48.5 9.3
## [2,] 5.7 65.1 8.0
## [3,] 3.8 47.2 10.9
## [4,] 3.2 53.2 12.0
## [5,] 3.1 55.5 9.7
## [6,] 4.6 36.1 7.9
## [7,] 2.4 24.8 14.0
## [8,] 7.2 33.1 7.6
## [9,] 6.7 47.4 8.5
## [10,] 5.4 54.1 11.3
## [11,] 3.9 36.9 12.7
## [12,] 4.5 58.8 12.3
## [13,] 3.5 27.8 9.8
## [14,] 4.5 40.2 8.4
## [15,] 1.5 13.5 10.1
## [16,] 8.5 56.4 7.1
## [17,] 4.5 71.6 8.2
## [18,] 6.5 52.8 10.9
## [19,] 4.1 44.1 11.2
## [20,] 5.5 40.9 9.4
S <- cov(x)
S
## [,1] [,2] [,3]
## [1,] 2.879368 10.0100 -1.809053
## [2,] 10.010000 199.7884 -5.640000
## [3,] -1.809053 -5.6400 3.627658
T0 <- n*t((xbar-mu0)) %*% solve(S) %*% (xbar-mu0)
F0 <- ((n-p)/(p*(n-1)))*T0
round(F0,2)
## [,1]
## [1,] 2.97
a <- 0.03
Fc <- qf(1-a,p,n-p)
round(Fc,2)
## [1] 3.79
# Como F0 cae dentro de la zona de No rechazo de Fc, podemos concluir que no existe evidencia suficiente para decir que el vector de medias no es igual a (4,50,10)
H0 = Existen diferencias detectables entre n1 y n2 Ha = NO existen diferencias detectables entre n1 y n2
# Información
n1 <- 15
n2 <- 12
p <- 7
# Vectores de medias muestrales
xbar1 <-as.vector(c(168.78,63.89,38.98,73.46,45.85,57.24,43.09))
xbar2 <-as.vector(c(177.58,74.25,41.67,77.75,49.00,58.00,45.62))
# Matrices de covarianza muestrales
S1 <- matrix(c(37.64,22.10,6.38,15.65,9.49,2.75,9.02,22.10,80.4,7.36,12.94,14.39,7.20,9.31,6.38,7.36,1.92,3.06,1.49,0.76,1.98,15.65,12.94,3.06,7.41,3.99,1.17,4.53,9.49,14.39,1.49,3.99,9.42,2.559,1.12,2.75,7.20,0.76,1.17,2.559,2.94,0.95,9.02,9.31,1.98,4.53,1.12,0.95,3.78), nrow = 7, byrow = TRUE)
S2 <- matrix(c(45.53,48.84,9.48,14.34,14.86,9.45,8.92,48.84,74.20,9.63,19.34,19.77,9.90,5.23,9.48,9.63,2.79,2.09,3.23,1.86,2.31,14.34,19.34,2.09,12.57,6.18,2.36,1.21,14.86,19.77,3.23,6.18,6.77,3.02,1.84,9.45,9.90,1.86,2.36,3.02,3.13,2.63,8.92,5.23,2.31,1.21,1.84,2.63,6.14),nrow = 7, byrow = TRUE)
#Calculamos la matriz de covarianza conjunta.
Sp <- ((n1-1)*S1+(n2-1)*S2)/(n1+n2-2)
Sp
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 41.1116 33.8656 7.7440 15.0736 11.85280 5.69800 8.9760
## [2,] 33.8656 77.6720 8.3588 15.7560 16.75720 8.38800 7.5148
## [3,] 7.7440 8.3588 2.3028 2.6332 2.25560 1.24400 2.1252
## [4,] 15.0736 15.7560 2.6332 9.6804 4.95360 1.69360 3.0692
## [5,] 11.8528 16.7572 2.2556 4.9536 8.25400 2.76184 1.4368
## [6,] 5.6980 8.3880 1.2440 1.6936 2.76184 3.02360 1.6892
## [7,] 8.9760 7.5148 2.1252 3.0692 1.43680 1.68920 4.8184
#El estadístico es:
dif <- xbar1 - xbar2
T0 <- ((n1*n2)/(n1+n2))*t(dif)%*%solve(Sp)%*%dif
T0
## [,1]
## [1,] 26.08934
#Entonces, el valor de prueba es:
F0 <- ((n1+n2-2-p)/(p*(n1+n2-2-1)))*T0
round(F0,2)
## [,1]
## [1,] 2.8
#Suponiendo que 𝛼=0.06, calculamos el valor crítico:
a <- 0.06
Fc <- qf(1-a,p,(n1+n2-2-p))
round(Fc,2)
## [1] 2.44
Como F0 > FC rechazamos H0, por ende concluimos que no existen diferencias detectables entre las dos muestras.