library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(correlationfunnel)
## ══ Using correlationfunnel? ════════════════════════════════════════════════════
## You might also be interested in applied data science training for business.
## </> Learn more at - www.business-science.io </>

Import data

data <- read_csv("../00_data/WA_Fn-UseC_-HR-Employee-Attrition.csv")
## Rows: 1470 Columns: 35
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (9): Attrition, BusinessTravel, Department, EducationField, Gender, Job...
## dbl (26): Age, DailyRate, DistanceFromHome, Education, EmployeeCount, Employ...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Explore data

skimr::skim(data)
Data summary
Name data
Number of rows 1470
Number of columns 35
_______________________
Column type frequency:
character 9
numeric 26
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
Attrition 0 1 2 3 0 2 0
BusinessTravel 0 1 10 17 0 3 0
Department 0 1 5 22 0 3 0
EducationField 0 1 5 16 0 6 0
Gender 0 1 4 6 0 2 0
JobRole 0 1 7 25 0 9 0
MaritalStatus 0 1 6 8 0 3 0
Over18 0 1 1 1 0 1 0
OverTime 0 1 2 3 0 2 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Age 0 1 36.92 9.14 18 30.00 36.0 43.00 60 ▂▇▇▃▂
DailyRate 0 1 802.49 403.51 102 465.00 802.0 1157.00 1499 ▇▇▇▇▇
DistanceFromHome 0 1 9.19 8.11 1 2.00 7.0 14.00 29 ▇▅▂▂▂
Education 0 1 2.91 1.02 1 2.00 3.0 4.00 5 ▂▃▇▆▁
EmployeeCount 0 1 1.00 0.00 1 1.00 1.0 1.00 1 ▁▁▇▁▁
EmployeeNumber 0 1 1024.87 602.02 1 491.25 1020.5 1555.75 2068 ▇▇▇▇▇
EnvironmentSatisfaction 0 1 2.72 1.09 1 2.00 3.0 4.00 4 ▅▅▁▇▇
HourlyRate 0 1 65.89 20.33 30 48.00 66.0 83.75 100 ▇▇▇▇▇
JobInvolvement 0 1 2.73 0.71 1 2.00 3.0 3.00 4 ▁▃▁▇▁
JobLevel 0 1 2.06 1.11 1 1.00 2.0 3.00 5 ▇▇▃▂▁
JobSatisfaction 0 1 2.73 1.10 1 2.00 3.0 4.00 4 ▅▅▁▇▇
MonthlyIncome 0 1 6502.93 4707.96 1009 2911.00 4919.0 8379.00 19999 ▇▅▂▁▂
MonthlyRate 0 1 14313.10 7117.79 2094 8047.00 14235.5 20461.50 26999 ▇▇▇▇▇
NumCompaniesWorked 0 1 2.69 2.50 0 1.00 2.0 4.00 9 ▇▃▂▂▁
PercentSalaryHike 0 1 15.21 3.66 11 12.00 14.0 18.00 25 ▇▅▃▂▁
PerformanceRating 0 1 3.15 0.36 3 3.00 3.0 3.00 4 ▇▁▁▁▂
RelationshipSatisfaction 0 1 2.71 1.08 1 2.00 3.0 4.00 4 ▅▅▁▇▇
StandardHours 0 1 80.00 0.00 80 80.00 80.0 80.00 80 ▁▁▇▁▁
StockOptionLevel 0 1 0.79 0.85 0 0.00 1.0 1.00 3 ▇▇▁▂▁
TotalWorkingYears 0 1 11.28 7.78 0 6.00 10.0 15.00 40 ▇▇▂▁▁
TrainingTimesLastYear 0 1 2.80 1.29 0 2.00 3.0 3.00 6 ▂▇▇▂▃
WorkLifeBalance 0 1 2.76 0.71 1 2.00 3.0 3.00 4 ▁▃▁▇▂
YearsAtCompany 0 1 7.01 6.13 0 3.00 5.0 9.00 40 ▇▂▁▁▁
YearsInCurrentRole 0 1 4.23 3.62 0 2.00 3.0 7.00 18 ▇▃▂▁▁
YearsSinceLastPromotion 0 1 2.19 3.22 0 0.00 1.0 3.00 15 ▇▁▁▁▁
YearsWithCurrManager 0 1 4.12 3.57 0 2.00 3.0 7.00 17 ▇▂▅▁▁

issues with data missing values factors or numeric variables Education, EnvironmentSatisfaction, JobInvolvement, JobSatisfaction, PerformanceRating, RelationshipSatisfaction, WorklifeBalance Zero Variance variables Over18, EmployCount, StandardHours Character variables Convert to numbers in recipe step Unbalanced target variables attrition id variable EmployeeNumber

factors_vec <- data %>% select( Education, EnvironmentSatisfaction, JobInvolvement, JobSatisfaction, PerformanceRating, RelationshipSatisfaction, WorkLifeBalance) %>% names()

data_clean <- data %>%
    # mutate(Education = Education %>% as.factor(), EnvironmentSatisfaction = EnvironmentSatisfaction %>% as.factor, JobInvolvement = JobInvolvement %>% as.factor(), JobSatisfaction = JobSatisfaction %>% as.factor(), PerformanceRating = PerformanceRating %>% as.factor(), RelationshipSatisfaction = RelationshipSatisfaction %>% as.factor(), WorkLifeBalance = WorkLifeBalance %>% as.factor()) %>%
   # address factors imported as numeric
      mutate(across(all_of(factors_vec), as.factor)) %>%
    # drop the zero variance variables
    select(-c(Over18, EmployeeCount, StandardHours))

Explore data

data_clean %>% count(Attrition)
## # A tibble: 2 × 2
##   Attrition     n
##   <chr>     <int>
## 1 No         1233
## 2 Yes         237
data_clean %>%
    ggplot(aes(Attrition)) +
    geom_bar()

attrition vs monthly income

data_clean %>%
    ggplot(aes(Attrition, MonthlyIncome)) +
    geom_boxplot()

correlation plot

# step 1: binarize
data_binarized <- data_clean %>%
    select(-EmployeeNumber) %>%
    binarize()

data_binarized %>% glimpse()
## Rows: 1,470
## Columns: 120
## $ `Age__-Inf_30`                       <dbl> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, …
## $ Age__30_36                           <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, …
## $ Age__36_43                           <dbl> 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ Age__43_Inf                          <dbl> 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ Attrition__No                        <dbl> 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ Attrition__Yes                       <dbl> 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `BusinessTravel__Non-Travel`         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ BusinessTravel__Travel_Frequently    <dbl> 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ BusinessTravel__Travel_Rarely        <dbl> 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, …
## $ `DailyRate__-Inf_465`                <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ DailyRate__465_802                   <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, …
## $ DailyRate__802_1157                  <dbl> 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, …
## $ DailyRate__1157_Inf                  <dbl> 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, …
## $ Department__Human_Resources          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `Department__Research_&_Development` <dbl> 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ Department__Sales                    <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `DistanceFromHome__-Inf_2`           <dbl> 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, …
## $ DistanceFromHome__2_7                <dbl> 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, …
## $ DistanceFromHome__7_14               <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ DistanceFromHome__14_Inf             <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, …
## $ Education__1                         <dbl> 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, …
## $ Education__2                         <dbl> 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, …
## $ Education__3                         <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, …
## $ Education__4                         <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ Education__5                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EducationField__Human_Resources      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EducationField__Life_Sciences        <dbl> 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, …
## $ EducationField__Marketing            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EducationField__Medical              <dbl> 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, …
## $ EducationField__Other                <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EducationField__Technical_Degree     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EnvironmentSatisfaction__1           <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, …
## $ EnvironmentSatisfaction__2           <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EnvironmentSatisfaction__3           <dbl> 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, …
## $ EnvironmentSatisfaction__4           <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, …
## $ Gender__Female                       <dbl> 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, …
## $ Gender__Male                         <dbl> 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, …
## $ `HourlyRate__-Inf_48`                <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, …
## $ HourlyRate__48_66                    <dbl> 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ HourlyRate__66_83.75                 <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, …
## $ HourlyRate__83.75_Inf                <dbl> 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, …
## $ JobInvolvement__1                    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobInvolvement__2                    <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ JobInvolvement__3                    <dbl> 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, …
## $ JobInvolvement__4                    <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, …
## $ JobLevel__1                          <dbl> 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, …
## $ JobLevel__2                          <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ JobLevel__3                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ JobLevel__4                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobLevel__5                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole__Healthcare_Representative   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ JobRole__Human_Resources             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole__Laboratory_Technician       <dbl> 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, …
## $ JobRole__Manager                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole__Manufacturing_Director      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ JobRole__Research_Director           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole__Research_Scientist          <dbl> 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole__Sales_Executive             <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole__Sales_Representative        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobSatisfaction__1                   <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ JobSatisfaction__2                   <dbl> 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, …
## $ JobSatisfaction__3                   <dbl> 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, …
## $ JobSatisfaction__4                   <dbl> 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
## $ MaritalStatus__Divorced              <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, …
## $ MaritalStatus__Married               <dbl> 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, …
## $ MaritalStatus__Single                <dbl> 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, …
## $ `MonthlyIncome__-Inf_2911`           <dbl> 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, …
## $ MonthlyIncome__2911_4919             <dbl> 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, …
## $ MonthlyIncome__4919_8379             <dbl> 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ MonthlyIncome__8379_Inf              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ `MonthlyRate__-Inf_8047`             <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ MonthlyRate__8047_14235.5            <dbl> 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, …
## $ MonthlyRate__14235.5_20461.5         <dbl> 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, …
## $ MonthlyRate__20461.5_Inf             <dbl> 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ `NumCompaniesWorked__-Inf_1`         <dbl> 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, …
## $ NumCompaniesWorked__1_2              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ NumCompaniesWorked__2_4              <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ NumCompaniesWorked__4_Inf            <dbl> 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, …
## $ OverTime__No                         <dbl> 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, …
## $ OverTime__Yes                        <dbl> 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, …
## $ `PercentSalaryHike__-Inf_12`         <dbl> 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, …
## $ PercentSalaryHike__12_14             <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, …
## $ PercentSalaryHike__14_18             <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ PercentSalaryHike__18_Inf            <dbl> 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, …
## $ PerformanceRating__3                 <dbl> 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, …
## $ PerformanceRating__4                 <dbl> 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, …
## $ RelationshipSatisfaction__1          <dbl> 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ RelationshipSatisfaction__2          <dbl> 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, …
## $ RelationshipSatisfaction__3          <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, …
## $ RelationshipSatisfaction__4          <dbl> 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, …
## $ StockOptionLevel__0                  <dbl> 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ StockOptionLevel__1                  <dbl> 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, …
## $ StockOptionLevel__2                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ StockOptionLevel__3                  <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ `TotalWorkingYears__-Inf_6`          <dbl> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, …
## $ TotalWorkingYears__6_10              <dbl> 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, …
## $ TotalWorkingYears__10_15             <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ TotalWorkingYears__15_Inf            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ `TrainingTimesLastYear__-Inf_2`      <dbl> 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, …
## $ TrainingTimesLastYear__2_3           <dbl> 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, …
## $ TrainingTimesLastYear__3_Inf         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
## $ WorkLifeBalance__1                   <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ WorkLifeBalance__2                   <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, …
## $ WorkLifeBalance__3                   <dbl> 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, …
## $ WorkLifeBalance__4                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `YearsAtCompany__-Inf_3`             <dbl> 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, …
## $ YearsAtCompany__3_5                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
## $ YearsAtCompany__5_9                  <dbl> 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, …
## $ YearsAtCompany__9_Inf                <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `YearsInCurrentRole__-Inf_2`         <dbl> 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, …
## $ YearsInCurrentRole__2_3              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ YearsInCurrentRole__3_7              <dbl> 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, …
## $ YearsInCurrentRole__7_Inf            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ `YearsSinceLastPromotion__-Inf_1`    <dbl> 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, …
## $ YearsSinceLastPromotion__1_3         <dbl> 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, …
## $ YearsSinceLastPromotion__3_Inf       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ `YearsWithCurrManager__-Inf_2`       <dbl> 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, …
## $ YearsWithCurrManager__2_3            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
## $ YearsWithCurrManager__3_7            <dbl> 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ YearsWithCurrManager__7_Inf          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
# step 2: correlation
data_correlation <- data_binarized %>%
    correlate(Attrition__Yes)

data_correlation
## # A tibble: 120 × 3
##    feature           bin       correlation
##    <fct>             <chr>           <dbl>
##  1 Attrition         No             -1    
##  2 Attrition         Yes             1    
##  3 OverTime          Yes             0.246
##  4 OverTime          No             -0.246
##  5 JobLevel          1               0.213
##  6 MonthlyIncome     -Inf_2911       0.207
##  7 StockOptionLevel  0               0.195
##  8 YearsAtCompany    -Inf_3          0.183
##  9 MaritalStatus     Single          0.175
## 10 TotalWorkingYears -Inf_6          0.169
## # ℹ 110 more rows
data_correlation %>%
    correlationfunnel::plot_correlation_funnel()
## Warning: ggrepel: 72 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Model Building

Split data

library(tidymodels)
## ── Attaching packages ────────────────────────────────────── tidymodels 1.2.0 ──
## ✔ broom        1.0.5     ✔ rsample      1.2.1
## ✔ dials        1.2.1     ✔ tune         1.2.1
## ✔ infer        1.0.7     ✔ workflows    1.1.4
## ✔ modeldata    1.4.0     ✔ workflowsets 1.1.0
## ✔ parsnip      1.2.1     ✔ yardstick    1.3.1
## ✔ recipes      1.1.0
## Warning: package 'modeldata' was built under R version 4.3.3
## Warning: package 'recipes' was built under R version 4.3.3
## ── Conflicts ───────────────────────────────────────── tidymodels_conflicts() ──
## ✖ scales::discard() masks purrr::discard()
## ✖ dplyr::filter()   masks stats::filter()
## ✖ recipes::fixed()  masks stringr::fixed()
## ✖ dplyr::lag()      masks stats::lag()
## ✖ yardstick::spec() masks readr::spec()
## ✖ recipes::step()   masks stats::step()
## • Dig deeper into tidy modeling with R at https://www.tmwr.org
set.seed(1234)
data_clean <- data_clean %>% sample_n(100)

data_split <- initial_split(data_clean, strata = Attrition)
data_train <- training(data_split)
data_test <- testing(data_split)


data_cv <- rsample::vfold_cv(data_train, strata = Attrition)

data_cv
## #  10-fold cross-validation using stratification 
## # A tibble: 10 × 2
##    splits         id    
##    <list>         <chr> 
##  1 <split [66/8]> Fold01
##  2 <split [66/8]> Fold02
##  3 <split [66/8]> Fold03
##  4 <split [66/8]> Fold04
##  5 <split [67/7]> Fold05
##  6 <split [67/7]> Fold06
##  7 <split [67/7]> Fold07
##  8 <split [67/7]> Fold08
##  9 <split [67/7]> Fold09
## 10 <split [67/7]> Fold10

Preprocess data

library(themis)

xgboost_rec <- recipes::recipe(Attrition ~ ., data = data_train) %>%
    update_role(EmployeeNumber, new_role = "ID") %>%
    step_dummy(all_nominal_predictors()) %>%
    step_smote(Attrition)

xgboost_rec %>% prep() %>% juice() %>% glimpse()
## Rows: 134
## Columns: 59
## $ Age                               <dbl> 27, 39, 25, 48, 31, 28, 31, 49, 28, …
## $ DailyRate                         <dbl> 1377, 1462, 949, 715, 1222, 640, 329…
## $ DistanceFromHome                  <dbl> 11, 6, 1, 1, 11, 1, 1, 4, 4, 2, 6, 1…
## $ EmployeeNumber                    <dbl> 1434, 1588, 1415, 1263, 895, 1301, 5…
## $ HourlyRate                        <dbl> 91, 38, 81, 76, 48, 84, 98, 85, 43, …
## $ JobLevel                          <dbl> 1, 3, 1, 5, 1, 1, 1, 5, 2, 1, 1, 3, …
## $ MonthlyIncome                     <dbl> 2099, 8237, 3229, 18265, 2356, 2080,…
## $ MonthlyRate                       <dbl> 7679, 4658, 4910, 8733, 14871, 4732,…
## $ NumCompaniesWorked                <dbl> 0, 2, 4, 6, 3, 2, 1, 2, 1, 3, 0, 4, …
## $ PercentSalaryHike                 <dbl> 14, 11, 11, 12, 19, 11, 12, 13, 15, …
## $ StockOptionLevel                  <dbl> 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, …
## $ TotalWorkingYears                 <dbl> 6, 11, 7, 25, 8, 5, 4, 23, 5, 7, 16,…
## $ TrainingTimesLastYear             <dbl> 3, 3, 2, 3, 2, 2, 3, 2, 3, 3, 4, 2, …
## $ YearsAtCompany                    <dbl> 5, 7, 3, 1, 6, 3, 4, 1, 5, 3, 15, 11…
## $ YearsInCurrentRole                <dbl> 0, 6, 2, 0, 4, 2, 2, 0, 4, 2, 13, 7,…
## $ YearsSinceLastPromotion           <dbl> 1, 7, 0, 0, 0, 1, 3, 0, 0, 1, 10, 4,…
## $ YearsWithCurrManager              <dbl> 4, 6, 2, 0, 2, 2, 2, 0, 4, 2, 11, 8,…
## $ Attrition                         <fct> No, No, No, No, No, No, No, No, No, …
## $ BusinessTravel_Travel_Frequently  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ BusinessTravel_Travel_Rarely      <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, …
## $ Department_Research...Development <dbl> 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, …
## $ Department_Sales                  <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, …
## $ Education_X2                      <dbl> 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, …
## $ Education_X3                      <dbl> 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, …
## $ Education_X4                      <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, …
## $ Education_X5                      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EducationField_Life.Sciences      <dbl> 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, …
## $ EducationField_Marketing          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EducationField_Medical            <dbl> 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, …
## $ EducationField_Other              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ EducationField_Technical.Degree   <dbl> 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, …
## $ EnvironmentSatisfaction_X2        <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, …
## $ EnvironmentSatisfaction_X3        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, …
## $ EnvironmentSatisfaction_X4        <dbl> 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, …
## $ Gender_Male                       <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, …
## $ JobInvolvement_X2                 <dbl> 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, …
## $ JobInvolvement_X3                 <dbl> 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, …
## $ JobInvolvement_X4                 <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole_Human.Resources           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole_Laboratory.Technician     <dbl> 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, …
## $ JobRole_Manager                   <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ JobRole_Manufacturing.Director    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobRole_Research.Director         <dbl> 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, …
## $ JobRole_Research.Scientist        <dbl> 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, …
## $ JobRole_Sales.Executive           <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, …
## $ JobRole_Sales.Representative      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ JobSatisfaction_X2                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ JobSatisfaction_X3                <dbl> 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, …
## $ JobSatisfaction_X4                <dbl> 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, …
## $ MaritalStatus_Married             <dbl> 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, …
## $ MaritalStatus_Single              <dbl> 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, …
## $ OverTime_Yes                      <dbl> 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, …
## $ PerformanceRating_X4              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, …
## $ RelationshipSatisfaction_X2       <dbl> 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, …
## $ RelationshipSatisfaction_X3       <dbl> 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, …
## $ RelationshipSatisfaction_X4       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ WorkLifeBalance_X2                <dbl> 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, …
## $ WorkLifeBalance_X3                <dbl> 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, …
## $ WorkLifeBalance_X4                <dbl> 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, …

Specify model

xgboost_spec <- 
  boost_tree(trees = tune()) %>% 
  set_mode("classification") %>% 
  set_engine("xgboost") 

xgboost_workflow <- 
  workflow() %>% 
  add_recipe(xgboost_rec) %>% 
  add_model(xgboost_spec) 

Tune hyperparameters

doParallel::registerDoParallel
## function (cl, cores = NULL, ...) 
## {
##     opts <- list(...)
##     optnames <- names(opts)
##     if (is.null(optnames)) 
##         optnames <- rep("", length(opts))
##     unnamed <- !nzchar(optnames)
##     if (any(unnamed)) {
##         warning("ignoring doParallel package option(s) specified with unnamed argument")
##         opts <- opts[!unnamed]
##         optnames <- optnames[!unnamed]
##     }
##     recog <- optnames %in% c("nocompile")
##     if (any(!recog)) {
##         warning(sprintf("ignoring unrecognized doParallel package option(s): %s", 
##             paste(optnames[!recog], collapse = ", ")), call. = FALSE)
##         opts <- opts[recog]
##         optnames <- optnames[recog]
##     }
##     old.optnames <- ls(.options, all.names = TRUE)
##     rm(list = old.optnames, pos = .options)
##     for (i in seq_along(opts)) {
##         assign(optnames[i], opts[[i]], pos = .options)
##     }
##     if (missing(cl) || is.numeric(cl)) {
##         if (.Platform$OS.type == "windows") {
##             if (!missing(cl) && is.numeric(cl)) {
##                 cl <- makeCluster(cl)
##             }
##             else {
##                 if (!missing(cores) && is.numeric(cores)) {
##                   cl <- makeCluster(cores)
##                 }
##                 else {
##                   cl <- makeCluster(3)
##                 }
##             }
##             assign(".revoDoParCluster", cl, pos = .options)
##             reg.finalizer(.options, function(e) {
##                 stopImplicitCluster()
##             }, onexit = TRUE)
##             setDoPar(doParallelSNOW, cl, snowinfo)
##         }
##         else {
##             if (!missing(cl) && is.numeric(cl)) {
##                 cores <- cl
##             }
##             setDoPar(doParallelMC, cores, mcinfo)
##         }
##     }
##     else {
##         setDoPar(doParallelSNOW, cl, snowinfo)
##     }
## }
## <bytecode: 0x13e5e7af8>
## <environment: namespace:doParallel>
set.seed(13500)
xgboost_tune <-
  tune_grid(xgboost_workflow,
            resamples = data_cv,
            grid = 5)
## Warning: package 'xgboost' was built under R version 4.3.3
## → A | warning: No control observations were detected in `truth` with control level 'Yes'.
## 
There were issues with some computations   A: x1

                                                 
→ B | error:   Error in `step_smote()`:
##                Caused by error in `bake()`:
##                ! Not enough observations of 'Yes' to perform SMOTE.
## There were issues with some computations   A: x1

There were issues with some computations   A: x2   B: x1

There were issues with some computations   A: x3   B: x2

There were issues with some computations   A: x4   B: x2

There were issues with some computations   A: x5   B: x2

There were issues with some computations   A: x5   B: x2